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Abstract— Motivated by the design of observers with good
performance and robustness, the problem of estimating the
state of a linear time-invariant plant in a distributed fashion,
over a graph, is considered. By attaching to each node a
linear observer and defining an innovation term that employs
information received from neighbors, we propose a distributed
state observer that satisfies a pre-specified rate of convergence
and has optimized robustness to measurement noise. The
convergence rate and the robustness to measurement noise of
the proposed observer are characterized in terms of KL bounds
as well as in terms of (nonlinear and linear) optimization
problems. Moreover, conditions on the plant for which the
proposed observer has an H∞ gain from noise to local estimate
that is smaller than that of a single Luenberger observer is
given. The properties of the proposed distributed state observer
are shown analytically and validated numerically.

I. INTRODUCTION

For a linear time-invariant system defined as

ẋ = Ax, (1)

where x∈R
n is the state, a Luenberger observer is given by

˙̂xL=Ax̂L−KL(ŷL−y), y = Cx+m, ŷL=Cx̂L, (2)

where y ∈ R
p is the measured output of (1), m : R≥0 → R

p

is measurement noise, x̂L is the state of the observer, and

ŷL ∈ R
p. This observer leads to an estimation error eL :=

x̂L − x with dynamics

ėL = ÃLeL +KLm, (3)

where ÃL :=A−KLC. When the plant (1) is observable, the

gain KL can be chosen such that the convergence rate of (3)

is arbitrarily fast; however, large gain amplifies the effect of

measurement noise. In fact, the design of observers in form

(2) involves a tradeoff between the rate of convergence and

the robustness with respect to measurement noise [1], [2].

For different observer structures, researchers proposed ways

to balance this tradeoff. In many applications, using two sets

of gains, one optimized for convergence rate and the other

for robustness, works well. Recent results following such an

approach involve the hybrid approach in [3], consisting of

resetting the gain according to the plant’s output norm, the

piecewise-linear gain method in [4], which compensates the

steady-state and bounds on the transient behavior simultane-

ously, the nonlinear adaptive high-gain observer in [5], and

the online gain scheduling observer in [6]. More recently,
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the use of more than one observer to estimate the state of a

plant has been proposed to meet performance and robustness

specifications simultaneously [7].

In the context of multi-agent systems, recent research

efforts have lead to enlightening results in distributed es-

timation and consensus. Distributed Kalman filtering are

employed for achieving spatially-distributed estimation tasks

in [8] and for sensor network in [9], [10], [11], [12], [13]. To

characterize the noise effect, in [14], a region-based approach

is used for distributed H∞-based consensus of multi-agent

systems with undirected graph. For dynamic average consen-

sus, [15] proposes a decentralized algorithm that guarantees

asymptotic agreement of a signal over strongly connected

and weight-balanced graphs. In [16], switching inter-agent

topologies are used to design distributed observers for a

leader-follower problem in multi-agent systems.

In this paper, we propose a novel distributed state observer

for the estimation of the state of linear systems as in (1)

using multiple agents. The proposed observer generates local

estimations at each agent by only using information from its

neighbors. When compared to a single Luenberger observer

as in (2), the local estimation error of the distributed observer

has improved convergence rate and robustness to measure-

ment noise. Under certain conditions, and when compared to

the Luenberger observer in (2), we establish that the proposed

observer improves the rate of convergence and the H∞ gain

from measurement noise to estimation error. For a given rate

of convergence, optimization problems for the minimization

of the H∞ gain from measurement noise to estimation error

are proposed as tools for the the design of the distributed

observer when the directed graph has fixed structure. When

the directed graph structure is not specified, a sufficient and

necessary condition which, in particular, minimizes the num-

ber of communication links, are established. Furthermore, a

sufficient condition that guarantees local H∞ gain that is

smaller than that of a Luenberger observer is presented.

The remainder of this paper is organized as follows.

Section II presents a motivational example. Section III intro-

duces the proposed observer and its basic properties. Meth-

ods for the design of the proposed observer are presented in

Section IV. In Section V, a consensus algorithm is discussed.

Complete proofs will be published elsewhere.

II. MOTIVATIONAL EXAMPLE

Consider the scalar plant

ẋ = ax, y = x+m, (4)



where m denotes measurement noise and a < 0. Suppose

we want to estimate the state x from measurements of y.

Following (2), a Luenberger observer for (4) is given by

˙̂xL = ax̂L −KL(ŷL − y), ŷL = x̂L. (5)

The resulting estimation error system is given by (3) with

ÃL = a−KL. Its rate of convergence is a−KL and, when

m is constant, its steady-state error is e⋆L := KL

KL−a
m. To get

fast convergence, the constant KL needs to be positive and

large. However, as argued in the introduction, with K0 large,

the effect of measurement noise is amplified, as the H∞

norm from noise to estimation error shows in Figure 2(a).

In light of recent popularity of multi-agent systems, it is

natural to explore the advantages of using more than one

measurement of the plant’s output so as to overcome to some

extent such a tradeoff.

In this paper, we show that it is possible to design

distributed observers that are capable of relaxing the said

tradeoff. To illustrate the idea behind the proposed observer,

consider the estimation of the state of the scalar plant (4) with

two agents, each taking its own measurement of y. The two

agents can communicate with each other according to the

following directed graph: agent 1 can transmit information

to agent 2, but agent 2 cannot send data to agent 1. This is

shown in Figure 1. Following the approach in this paper, a
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x̄1 = x̂1

x̄2 = 1
2 (x̂1 + x̂2)

Fig. 1. Two agents connected as a direct graph.

distributed state observer would take the form

˙̂x1 = ax̂1 −K11(ŷ1 − y1),

˙̂x2 = ax̂2 −K22(ŷ2 − y2)−K21(ŷ1 − y1),

ŷ1 = x̂1, ŷ2 = x̂2, x̄1 = x̂1, x̄2 =
x̂1 + x̂2

2
,

(6)

where x̂i and x̄i are associated with agent i, each measured

plant output yi is corrupted by measurement noise mi, that is

y1 = x+m1 and y2 = x+m2, where mi’s are independent.

The term “−K21(ŷ1 − y1)” defines an innovation term

exploiting the information shared by agent 1 with agent 2.

The output x̄i of agent i defines the local estimate (at agent

i) of x. Since agent 1 only has access to its own information,

we have x̄1 = x̂1, while since agent 2 has also information

from its neighbor, agent 2’s output x̄2 can be taken as the

average of the states x̂1 and x̂2.1

To analyze the estimation error induced by the distributed

state observer in (6), define error variables ei := x̂i − x, i ∈
{1, 2}. Then, the error system is given by

ė1 = (a−K11)e1 +K11m1,

ė2 = −K21e1 + (a−K22)e2 +K21m1 +K22m2,
(7)

which can be written in matrix form as

ė = Ãe+ K̃m, (8)

1In general, x̄2 could be the convex combination of x̂1 and x̂2, i.e.,
x̄2 = s1x̂1 + s2x̂2, s1 + s2 = 1, s1, s2 ∈ R.

where e = [e1 e2]
⊤, m = [m1 m2]

⊤,

Ã =

[

a−K11 0
−K21 a−K22

]

, K̃ =

[

K11 0
K21 K22

]

. (9)

Then, when K11,K21, and K22 are chosen such that Ã is

Hurwitz and when m is constant, the steady-state value of

(8) is given by

e⋆1=
K11

K11−a
m1, e

⋆
2=

−aK21

(K11−a)(K22−a)
m1+

K22

K22−a
m2.

Furthermore, the local estimation error resulting from each

agent is given by the quantity ēi := x̄i − x, i ∈ {1, 2}, and

has a steady-state value given by

ē⋆1=e⋆1, ē⋆2=
K11(K22−a)−aK21

2(K11−a)(K22−a)
m1+

K22

2(K22−a)
m2.

Let K11 = K22 = KL. Because of the structure of Ã, it can

be verified that the rate of convergence for the estimation

error (8) is a − KL, which is the same as that of the

Luenberger observer (5). Moreover, assuming that constant

noise m1 and m2 are equal, i.e., m1 = m2 = m0, then

ē⋆2 =
2KL(KL − a)− aK21

2(KL − a)2
m0. (10)

Interestingly, picking K21 = 2KL(KL−a)
a

, we obtain ē⋆2 = 0
for any unknown constant m0, namely, the measurement

noise can be completely rejected. When constant noise m1

and m2 are not equal, the choice K21 = KL(KL−a)
a

leads to

ē⋆2 = KL

2(KL−a)m2 which is a significant improvement (50%)

over the case that agent 2 only has access to its own mea-

surement (in which case ē⋆2 = KL

KL−a
m2). These properties

cannot be achieved by using the Luenberger observer in (5).

For general measurement noises m1 and m2 (not neces-

sarily constant), the H∞ norm2 from noise to the estimation

error can be employed to study the noise effect. As shown in

Figure 2(b), when K21 ≈ −4.75, the H∞ gain from noise m
to the local estimate ē2 achieves a minimum equal to 0.45,

which is smaller than that of the Luenberger observer in (5),

which is 0.8, with equal rate of convergence.
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Fig. 2. Comparison between the H∞ norms for the proposed observer and
the Luenberger observer, with fixed parameters K11 = K22 = 2 and
a = −0.5 (improved by approximately 43.8%).

The idea behind the proposed distributed observer illus-

trated in the example above generalizes to the case where

2By “H∞ norm” we mean the L2 gain from m to e, which is the induced
2-norm of the complex matrix transfer function from m to e.



N agents can measure the plant’s output over a graph. The

purpose of the next two sections is making this precise.

III. DISTRIBUTED STATE OBSERVERS

A. Notation

Given a matrix A with Jordan form A=XJX−1, the set

eig(A) contains all eigenvalues of A, α(A) :=max{Re(λ) :
λ∈eig(A)}; µ(A) := max{λ/2 : λ ∈ eig(A+A⊤)}; |A| :=
max{|λ| 12 : λ ∈ eig(A⊤A)}; κ(A) := min{|X ||X−1| :
A = XJX−1}; A is dissipative if A + A⊤ < 0. Given

two vectors u, v ∈ R
n, |u| :=

√
u⊤u, notation [u⊤ v⊤]⊤

is equivalent to (u, v). Given a function m : R≥0 → R
n,

|m|∞ := sup
t≥0

|m(t)|. The set of complex numbers is denoted

by C0. N denotes the set of natural numbers, i.e., N :=
{1, 2, 3, . . .}. Given a symmetric matrix P , λmax(P ) :=
max{λ : λ ∈ eig(P )} and λmin(P ) := min{λ : λ ∈
eig(P )}. For a transfer function C0 ∋ s 7→ T (s) ∈ Cn×m

0 ,

the H∞ norm is defined as ||T ||∞ = supω∈R
σ̄(T (jω)),

where σ̄(T (jω)) =: max{|λ| 12 : λ ∈ eig(T (jω)HT (jω))}
with T (jω)H being the conjugate transpose of T (jω). Given

matrices A,B with proper dimensions, we define the opera-

tor He(A,B) := A⊤B+B⊤A; A⊗B defines the Kronecker

product; and A ∗ B defines the Khatri-Rao product. Given

N ∈ N, IN ∈ R
N×N defines the identity matrix, 1N is the

vector of N ones, and ΠN := IN − 1
N
1N1⊤N . Given a set S,

the function card(S) defines the cardinality of the set S.

B. Preliminaries on graph theory

A directed graph (digraph) is defined as Γ = (V , E , G).
The set of nodes of the digraph are indexed by the elements

of V = {1, 2, . . . , N}, and the edges are the pairs in the

set E ⊂ V × V . Each edge directly links two nodes, i.e.,

an edge from i to j, denoted by (i, j), implies that agent i
can send information to agent j. The adjacency matrix of

the digraph Γ is denoted by G = (gij) ∈ R
N×N , where

gij = 1 if (i, j) ∈ E , and gij = 0 otherwise. A digraph

is undirected if gij = gji for all i, j ∈ V . The in-degree

and out-degree of agent i are defined by din(i) =
∑N

j=1 gji

and dout(i) =
∑N

j=1 gij . A digraph is weight-balanced if,

for each node i ∈ V , the in-degree and out-degree coincide.

The out-degree matrix D is the diagonal matrix with entries

Dii = dout(i), for all i ∈ V . The Laplacian matrix of the

graph Γ, denoted by L, is defined as L = D − G. The

Laplacian has the property that L1N = 0. The set of indices

corresponding to the neighbors that can send information to

the i-th agent is denoted by I(i) := {j ∈ V : (j, i) ∈ E}.

C. Distributed observer model and basic properties

For the plant in (1), consider a network of N agents

defined by a digraph Γ = (V , E , G). For the estimation of the

plant’s state, a local state observer using information from

its neighbors is attached to each agent. More precisely, for

each i ∈ V , the agent i runs a local state observer given by

˙̂xi = Ax̂i −
∑

j∈I(i)

Kij(ŷj − yj), (11a)

ŷi = Cx̂i, x̄i =
1

card(I(i))
∑

j∈I(i)

x̂j , (11b)

where x̂i denotes the state variable, x̄i is the local estimate

of the plant’s state x, and yi denotes the measurement of y
in (1) taken by the i-th agent under measurement noise mi,

that is yi = Cx + mi. The information that the i-th agent

obtains from its neighbors are the values of x̂j ’s and yj’s for

each j ∈ I(i). The collection of local state observers in (11)

connected via the digraph Γ defines the proposed distributed

state observer.

To analyze the properties of distributed state observers,

define for each i ∈ V , ei := x̂i−x and the associated vector

e := (e1, . . . , eN). Furthermore, define the local estimation

error ēi := x̄i − x, the global estimation error vector ē :=
(ē1, . . . , ēN), and the noise vector m := (m1, . . . ,mN ).
Then, it follows that

ėi = Aei −
∑

j∈I(i)

KijCej +
∑

j∈I(i)

Kijmj , (12a)

ēi =
1

card(I(i))
∑

j∈I(i)

ej , (12b)

which can be rewritten in the compact form

ė = (IN⊗A−(K∗G⊤)(IN⊗C))e+(K∗G⊤)m, (13a)

ē = (D−1⊗In)(G
⊤⊗In)e, (13b)

where G is the adjacency matrix, D is the out-degree matrix,

K =











K11 K12 · · · K1N

K21 K22 · · · K2N

...
...

. . .
...

KN1 KN2 · · · KNN











, (14)

and the Khatri-Rao product K∗G⊤ is such that K is treated

as N ×N block matrices with Kij’s as blocks. Define

A := IN ⊗A− (K ∗G⊤)(IN ⊗ C),

B := K ∗G⊤, C := (D−1⊗In)(G
⊤ ⊗ In).

(15)

Then, the transfer function from measurement noise m to

error ē is given by T (s) = C(sI −A)−1B.

Remark 3.1: IN⊗A defines a block diagonal matrix with

matrix A in each of the N blocks (of dimension n×n). The

matrix K∗G⊤ defines the gain matrix for the graph, while

(D−1⊗In)(G⊤⊗In) generates the estimation matrix for each

agent by averaging the local estimates from its neighbors.

Within this setting, we first establish a stability property

for the distributed state observers in nominal conditions,

namely, we present conditions when the matrix A is Hurwitz.

Proposition 3.2: For the plant (1) with noise m ≡ 0, if

the pair (A,C) is detectable, then, for any N ∈ N, there

exists a digraph Γ with adjacency matrix G and a gain K



such that the matrix A is Hurwitz and the resulting system

(13) has its origin globally exponentially stable.

The following proposition establishes a relationship be-

tween the measurement noise and the performance of the

distributed state observer in terms of ISS bounds.

Proposition 3.3: For the plant (1), assume the pair (A,C)
is detectable. Let N ∈ N and a digraph Γ = (V , E , G) be

given. If there exists a gain K such that at least one of the

following conditions are satisfied:

1) The matrix A is Hurwitz with distinct eigenvalues;

2) For some ᾱ>0, He(A, I)≤−2ᾱI;

3) ∃ P =P⊤ > 0 s.t. He(A, P )≤−2ᾱP for some ᾱ>0;

then, there exist a class-KL function β : R≥0 × R≥0 →
R≥0 and a class-K function ϕ : R≥0 → R≥0 such that the

solution ē of (13) from any e(0) ∈ R
nN satisfies

|e(t)| ≤ β(|e(0)|, t) + ϕ(|m|∞) ∀t ∈ R≥0. (16)

In particular, the functions β and ϕ can be chosen, for

all s, t ≥ 0, as follows: if 1) holds, then, β(s, t) =

κ(A)|C|exp(α(A)t)s, ϕ(s) = κ(A) |B||C|
|α(A)|s; if 2) holds, then,

β(s, t) = |C| exp(µ(A)t)s, ϕ(s) = |B||C|
|µ(A)|s; if 3) holds,

then, β(s, t) =
√
cp|C| exp(−λt)s, ϕ(s) = cp

|B||C|
|λ| s, with

λ = ᾱλmin(P )
λmax(P ) and cp = λmax(P )

λmin(P ) .

IV. DESIGN OF DISTRIBUTED STATE OBSERVER

A. Fixed connectivity graph

In this section, we consider the design of distributed state

observer over a fixed digraph Γ = (V , E , G). The design

specifications of our interest are the rate of convergence and

the H∞ gain from noise m to estimation errors ē or ei,
i.e., the L2 gain. In particular, to guarantee that the rate

of convergence of the system (13) is better (or no worse)

than that of a single Luenberger observer as in (2), the

eigenvalues of the error system (13) will be assigned to the

left of the vertical line at −σ in the s-plane, where σ is

the convergence rate for the Luenberger observer. Following

[17], the eigenvalues of the matrix A are located in the region

D := {s ∈ C0 : Re(s) < −σ} if and only if there exists a

matrix PS = P⊤
S > 0 such that

A⊤PS + PSA+ 2σPS < 0. (17)

The next result follows using [18, Theorem 2.41].

Proposition 4.1: Given a plant as in (1) and a digraph Γ,

the H∞ gain of the transfer function from m to ē in (13) is

less than or equal to γ if and only if the following inequality

is feasible for some PH = P⊤
H > 0 and K:





A⊤PH + PHA PHB C⊤

B⊤PH −γI 0
C 0 −γI



 < 0. (18)

Remark 4.2: The global H∞ gain from m to ē determines

the overall effect of the noise m on the distributed state

observers. To determine the effect of the noise m on the

local estimate x̄i, the H∞ gain from m to ēi can also be

characterized in (18) by replacing C with Ci, where Ci is the

sub-matrix of C from the (in−n+1)-th row to the (in)-th row.

Then, by combining the rate of convergence constraint in

(17) and the H∞ constraint in (18), we perform the synthesis

of the proposed observers using the following result.

Theorem 4.3: Given a plant as in (1) and a digraph Γ,

the rate of convergence is larger than or equal to σ and the

H∞ gain from m to estimation error ē in (13) is minimized

if and only if there exist matrices K, PS , and PH such that

the following optimization problem is feasible:3

min γ (19a)

s.t. He(A, PS) + 2σPS < 0, (19b)




He(A, PH) PHB C⊤

B⊤PH −γI 0
C 0 −γI



 < 0, (19c)

PS = P⊤
S > 0, PH = P⊤

H > 0. (19d)

Remark 4.4: The optimizations in (19) can be solved

offline, and the resulting observers for each agent are de-

centralized.

Next, we provide an example to illustrate the results above.

Example 4.5: Consider the scalar plant in (4) with a =
−0.5. We revisit the motivational example, where 2 agents

are connected via an all-to-all graph. If the rate of conver-

gence requirement is σ = 2.5, and the H∞ gain from m to

ē is restricted to be less than or equal to 0.8, then, by letting

K11 = 2 and K22 = 2, we can find the feasible region for

K12 and K21 as shown in Figure 3(a). Moreover, if the rate

of convergence is required to be σ = 3.0 with the same

H∞ constraint, then, by letting K11 = 2.5 and K22 = 2.5,

we obtain the feasible region for K12 and K21 as shown in

Figure 3(b). As the figure suggests, faster rate of convergence

leads to a smaller feasible region for the observer parameters.

More importantly, for a single Luenberger observer, there is

no feasible solution for rate of convergence larger than or

equal to 3.0 and global H∞ gain less than 0.8.
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(a) Feasible regions with rate of
convergence equal 2.5 (K12 =

K21 = 2) and global H∞ gain less
than 0.8.
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Fig. 3. Feasible regions for observer parameters subject to rate of conver-
gence and H∞ constraints.

Now, for the same plant, consider digraphs with 6 agents

where the edges are defined as in Figure 4. In all cases,

3In (19), C can be replaced by Ci to, instead, minimize the local H∞

gain, i.e., the H∞ gain from noise m to ēi.



each agent is self connected. Let M1 denote the number of

non-self edges for agent 1, e.g., when M1 = 0 as shown in

Figure 4, it is implied that G = I6, while when M1 = 5,

G =
[

g1 g2
]

, g1 = [1 1⊤5 ]
⊤ and g2 = [0 I5]

⊤. Let the rate

of convergence specification be σ = 2.5. Then, the local H∞

norms from noise m = (m1, . . . ,m6) to estimation error ē1
at agent 1 for the cases in Figure 4 are shown in Table I. From

case M1 = 0 to case M1 = 1, the improvement is significant;

in fact, when an incoming edge is added to agent 1, the

local H∞ is improved by 43.8% when compared to the case

where a single Luenberger observer is used at agent 1. When

two agents provide information to agent 1 (M1 = 2), the

improvement is approximately 57.5%, while when three and

four agents communicate to agent 1, the improvement grows

to approximately 65% and 69% (M1 = 4), respectively. △
1© 2©
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M1 = 0 M1 = 1 M1 = 2

M1 = 3 M1 = 4 M1 = 5

Fig. 4. Different digraph structures with 6 agents.

TABLE I

COMPARISON OF LOCAL H∞ NORMS FROM NOISE m TO ē1 WITH

DIFFERENT NUMBER OF INCOMING EDGES FOR AGENT 1.

number of non-self edges (M1)
0 1 2 3 4 5

local H∞ 0.80 0.45 0.34 0.28 0.25 0.22

improv. (%) 0.00 43.8 57.5 65.0 68.8 72.5

Optimizing the graph For distributed state observers whose

digraph has not yet been specified, a natural question to

ask is whether there exists a digraph that minimizes the

number of links between agents for the given specifications.

More precisely, given a rate of convergence and a desired

H∞ gain, find a digraph with minimum number of edges.

In applications, such minimizations could potentially lower

the cost of a distributed system as it could reduce the

number of agents and communication links. The following

result provides a sufficient and necessary condition for such

optimization problem.

Theorem 4.6: For the error system (13), the rate of con-

vergence is larger than or equal to σ and the H∞ norm

from noise m to estimation error ē is less than or equal to

γ⋆ over a digraph Γ with minimized number of edges if and

only if there exist matrices K, G, PS , and PH such that the

following optimization problem is feasible:

min tr(D) (20a)

s.t. He(A, PS) + 2σPS < 0, (20b)




He(A, PH) PHB C⊤

B⊤PH −γ⋆I 0
C 0 −γ⋆I



 < 0, (20c)

PS = P⊤
S > 0, PH = P⊤

H > 0. (20d)

The objective function in (20a) given by the trace of D is

equal to
∑N

i=1

∑N

j=1 gij . The constraints in (20b) and (20c)

are nonlinear and not jointly convex. By changing variables,

the nonlinear constraints in (20b) and (20c) can be linearized,

as established in the following theorem.

Theorem 4.7: For the error system (13), the rate of con-

vergence is larger than or equal to σ and the H∞ norm from

noise m to estimation error ē is less than or equal to γ⋆ over

a digraph Γ with minimized number of communication links

if there exist matrices K, G, and P such that the following

optimization problem is feasible:

min tr(D) (21a)

s.t. He(IN ⊗A,P )− Q̃+ 2σP < 0, (21b)




He(IN ⊗A,P )− Q̃ Q C⊤

Q⊤ −γ⋆I 0
C 0 −γ⋆I



 < 0, (21c)

P = P⊤ > 0, (21d)

where Q = P (K∗G⊤) and Q̃ = Q(IN⊗C)+(IN⊗C)⊤Q⊤.

Remark 4.8: The results above define the graph via the

resulting G. The resulting K and G from (21) satisfies K∗
G⊤=P−1Q, which may not be unique.

B. A sufficient condition guaranteeing smaller local H∞

gain

In this section, we are interested in conditions on the

plant (1) for which it is possible to design distributed state

observers that, for a given rate of convergence σ⋆, have local

H∞ gains smaller than when a single Luenberger observer

is used at each agent. The following result provides one such

condition.

Theorem 4.9: Given σ⋆ ≥ 0, suppose KL is such that

the eigenvalues of the error system (3) of the Luenberger

observer (2) for the plant (1) are located in the region D =
{s ∈ C0 : Re(s) < −σ⋆}, and the H∞ gain from m to eL
is γL > 0. If there exist α̃ ∈ R and P = P⊤ > 0 such that




He(A−KLC,P ) PKLC −α̃In
C⊤K⊤

LP −In (1 + α̃)In
−α̃In (1 + α̃)In −In



 < 0, (22)

then, for every N ∈ N, N > 1, there exist a digraph Γ and

a gain K for N distributed state observers in (11) such that

the error system (13) has its eigenvalues located in D and

the local H∞ gain from m to associated ēi for all agents

are less than or equal to γL. Moreover, for at least N − 1
agents, the local H∞ gain from m to associated ēi is strictly

less than γL.

Note that condition (22) is a property on the plant for

a given KL; basically, an H∞ inequality as in (18). To

illustrate this condition, the scalar plant (4) is considered.

With the Luenberger observer (5), the transfer function in the

s-domain from m to eL is given by TL(s) =
KL

s−a+KL

. Since

(22) is an LMI with respect to P and α, its feasibility can be

easily verified, e.g., for a = −0.5 and KL = 2, P = 0.47 and

α = −0.5 solve (22). Therefore, for the plant (4), there exist



distributed state observers such that at least N−1 local H∞

gains are smaller than γL = 0.8 with KL = 2. This justifies

the improvement shown in the motivational example.

V. DISCUSSIONS

The results in the previous section enable the design

of distributed state observers as in (11) that meet rate of

convergence and H∞ gain constraint with minimized number

of links. The local estimate could further be employed

to reach a consensus on an estimate of the state of the

plant across the entire digraph. This problem is a consensus

problem of signals. When measurement noise is zero, the

algorithm in [15] can be employed. In fact, the algorithm

in [15] can be generalized to the case of vector inputs. To

this end, we attach to each agent an agreement vector ξi and

employ the following distributed algorithm to guarantee that

each ξi asymptotically approaches the average of the local

estimates, namely, 1
N

∑N

j=1 x̂j(t):

ξ̇ki = −β1(ξ
k
i − x̂k

i )− β2

N
∑

j=1

ℓijξ
k
j − vki + ˙̂xk

i , (23a)

v̇ki = β1β2

N
∑

j=1

ℓijξ
k
i , (23b)

for i ∈ V , 1 ≤ k ≤ n, where ξi = (ξ1i , . . . , ξ
k
i , . . . , ξ

n
i );

x̂i’s are the estimates generated by agent i using the local

observer in (11a), vi is the auxiliary variable, and ℓij’s are

elements of the Laplacian L associated with the digraph Γ.

The constants β1, β2 ∈ R are parameters to be determined.

To analyze the convergence and stability of algorithm (23),

following [15], it is rewritten as

δ̇ = −β1δ − β2(L ⊗ In)δ − w, (24a)

ẇ = β1β2(L ⊗ In)δ −ΠnN (¨̂x+ β1
˙̂x), (24b)

where δi=ξi− 1
N

∑N

j=1x̂j , i∈V , w=v−ΠnN ( ˙̂x+β1x̂). Fol-

lowing [15, Lemma 4.3], we obtain the following property.

Lemma 5.1: For the plant in (1), assume the digraph

Γ is strongly connected and weight balanced, where x̂i

has the dynamics given in (11) with mi ≡ 0. Moreover,

assume there exists K in (15) such that A is Hurwitz.

Then, for any x(0), x̂i(0), ξi(0) ∈ R
n, β1 > 0, β2 > 0,

and vi(0) ∈ R
n such that

∑N
i=1 vi(0) = 0, we have

limt→∞

(

ξi(t)− 1
N

∑N

j=1 x̂j(t)
)

= 0 for all i ∈ V .

Remark 5.2: When the noise m is not zero, due to the

linear dynamics, we conjecture that the algorithm in (23)

has an ISS like property with respect to m, similar to the

KL bound in (16).

VI. CONCLUSION

In contrast to a single Luenberger observer for linear time-

invariant systems, the proposed distributed state observers

have the capability of attaining fast rate of convergence

without necessarily jeopardizing robustness to measurement

noise in the H∞ sense. When solved for specific systems

and compared to Luenberger observers, the stated feasibility

and optimization problems lead to significant improvements.

Such an improvement is guaranteed by the satisfaction of an

LMI condition which can lead to significantly reduced H∞

gains of the order of 43.8% for the scalar case. While the

optimization of the communication links of distributed state

observers is not necessarily linear and convex, numerical

results for a particular plant indicate that the improvement

obtained in robustness is also significant (of the order of

73%).

REFERENCES

[1] L. K. Vasiljevic and H. K. Khalil. Differentiation with high-gain
observers the presence of measurement noise. In Proc. of 45th IEEE

Conference on Decision and Control, pages 4717–4722, Dec. 2006.
[2] A. A. Ball and H. K. Khalil. High-gain observers in the presence of

measurement noise: A nonlinear gain approach. In Proc. of 47th IEEE

Conference on Decision and Control, pages 2288–2293, Dec. 2008.
[3] J. H. Ahrens and H. K. Khalil. High-gain observers in the pres-

ence of measurement noise: A switched-gain approach. Automatica,
45(4):936–943, 2009.

[4] A. A. Ball and H. K. Khalil. Analysis of a nonlinear high-gain observer
in the presence of measurement noise. In Proc. of American Control

Conference, pages 2584–2589, July 2011.
[5] R. G. Sanfelice and L. Praly. On the performance of high-gain

observers with gain adaptation under measurement noise. Automatica,
47(10):2165–2176, 2011.

[6] H. Lei, J. Wei, and W. Lin. A global observer for observable
autonomous systems with bounded solution trajectories. In Proc. of

44th IEEE Conference on Decision and Control, pages 1911–1916,
Dec. 2005.

[7] Y. Li and R. G. Sanfelice. A coupled pair of Luenberger observers
for linear systems to improve rate of convergence and robustness to
measurement noise. In Proc. of American Control Conference, pages
2497–2502, June 2013.

[8] J. Cortes. Distributed Kriged Kalman filter for spatial estimation. IEEE

Transactions on Automatic Control, 54(12):2816–2827, 2009.
[9] R. Olfati-Saber. Distributed Kalman filter with embedded consensus

filters. In Proc. of 44th IEEE Conference on Decision and Control,

European Control Conference., pages 8179–8184, 2005.
[10] D. P. Spanos, R Olfati-Saber, and R. M. Murray. Approximate

distributed Kalman filtering in sensor networks with quantifiable
performance. In Proc. of 4th International Symposium on Information

Processing in Sensor Networks, Piscataway, NJ, USA, 2005. IEEE
Press.

[11] P. Alriksson and A. Rantzer. Distributed Kalman filtering using
weighted averaging. In Proc. of 17th International Symposium on

Mathematical Theory of Networks and Systems, 2006.
[12] R. Olfati-Saber. Distributed Kalman filtering for sensor networks. In

Proc. of 46th IEEE Conference on Decision and Control, pages 5492–
5498, 2007.

[13] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri. Distributed Kalman
filtering based on consensus strategies. IEEE Journal on Selected

Areas in Communications, 26(4):622–633, 2008.
[14] Y. Zhao, Z. Duan, G. Wen, and G. Chen. Distributed H∞ consensus

of multi-agent systems: a performance region-based approach. Inter-
national Journal of Control, 85(3):332–341, 2012.

[15] S. Martinez S. S. Kia, J. Cortes. Dynamical average consensus
under limited control authority and privacy requirements. International
Journal of Robust and Nonlinear Control, 2013.

[16] Y. Hong, G. Chen, and L. Bushnell. Distributed observers design
for leader-following control of multi-agent networks. Automatica,
44(3):846–850, 2008.

[17] M. Chilali and P. Gahinet. H∞ design with pole placement con-
straints: an LMI approach. IEEE Transactions on Automatic Control,
41(3):358–367, March 1996.

[18] C. Scherer, P. Gahinet, and M. Chilali. Multiobjective output-feedback
control via LMI optimization. IEEE Transactions on Automatic

Control, 42(7):896–911, July 1997.


