
A Symbolic Simulator for Hybrid Equations
Pablo Ñañez Nathalie Risso Ricardo G. Sanfelice1

Universidad de los Andes
and University of Arizona University of Arizona University of Arizona

pa.nanez49@uniandes.edu.co nrisso@email.arizona.edu sricardo@u.arizona.edu
Department of Aerospace and Mechanical Engineering,
University of Arizona, 1130 N. Mountain Ave, AZ 85721.

Keywords: Symbolic simulation, hybrid systems, numerical
simulation
Abstract
In this paper, the symbolic simulation of hybrid dynamical
systems is studied and an algorithm to compute symbolic so-
lutions for such systems is presented. The tasks to perform
such simulations are introduced and an algorithm to symbol-
ically calculate a solution to a hybrid system is presented.
The symbolic representation allows the proposed simulator
to calculate the actual solution to the system. Benefits and
drawbacks of symbolic simulation with respect to the numer-
ical approach are presented. These statements are supported
and illustrated in several examples throughout the paper.

1. INTRODUCTION
During the last few decades, modeling and analysis of hy-

brid systems have been recognized as powerful tools that al-
low to represent systems with discrete and continuous behav-
ior in a myriad of applications, ranging from air traffic control
and thermal reactors to biological systems. Recent advances
in the theory of hybrid systems have permitted the analysis
of the dynamics of such systems in terms of stability, conver-
gence, and robustness to perturbations [1].

Research targeting the computation of the trajectories of
such systems has also been an active area, as the very many
tools for simulation of hybrid systems indicate. Such tools in-
clude Modelica [2], the Hybrid Chi simulator [3], Shift [4],
Charon [5], Hysdel [6], the Hybrid Equations (HyEQ) Tool-
box [7], among others. Due to the inherent finite-precision
representation of traditional numerical computations, these
simulation tools produce approximations of the true system
trajectories. Unlike differential equations, the computation
of trajectories of hybrid systems presents several challenges,
such as the selection of the size of the integration step, event
detection and localization to enable transitions in the sys-
tem, among others [8]. Such limitations make the detection
of “failures” or “critical states” of such systems difficult, as
the computed trajectory may not actually represent the true
system behavior. In fact, finite-precision representation lacks

1Research by R. G. Sanfelice has been partially supported by the National
Science Foundation under CAREER Grant no. ECS-1150306 and by the Air
Force Office of Scientific Research under YIP Grant no. FA9550-12-1-0366.

the needed accuracy required to deal with safety relevant hy-
brid systems or can lead to pathological behaviors, such as
those pointed out in [9], where the system’s true dynamics
are completely lost. To deal with some of the issues men-
tioned above, some computational tools include interval rep-
resentation of variables to improve accuracy. Another ap-
proach used for hybrid system analysis is to represent their
dynamics using specific programming languages. Many such
implementations have been developed for this purpose, be-
ing those based on linear programming languages the most
popular ones. For such implementations, hybrid dynamics
are typically represented as constrained sets of equations, for
whose it is possible to apply tools for reachable set analysis
[10, 11, 12, 13, 14, 15, 16] and sensitivity analysis [17]; see
also the software-based optimization methods in [18].

A different approach to overcome the issues due to fi-
nite precision consists of including symbolic solvers, such as
Mathematica and Matlab’s MuPad, that can be used to gen-
erate solutions to hybrid systems. While such approach has
been deeply explored for the simulation of differential equa-
tions, their application to the hybrid setting has been pre-
sented in most cases as isolated functions, rather than a hy-
brid simulation tool. In fact, purely symbolic simulation tools
for generic hybrid systems are not available. Symbolic tools
for specific types of hybrid systems, such as linear hybrid
systems have been presented in [19, 20] though they involve
finite-precision computations, hence leading to the previously
described accuracy issues.

Motivated by the need to automatically analyze hybrid sys-
tems and their solutions, we propose a simulation framework
that represents a first step towards a symbolic simulation and
verification tool for hybrid systems. The proposed tool con-
sists of a set of scripts that, using Matlab’s symbolic engine
(MuPad), compute exact symbolic solutions for hybrid sys-
tem equations, leading to an explicit representation of the tra-
jectories, with no finite-precision limitations, which are more
suitable for the analysis of system properties. The scope of
systems whose solutions can be simulated with the proposed
tool depends, in particular, on whether the symbolic engine
can find a closed-form expression for the solutions during
flows.

The remainder of this paper is organized as follows, Sec-

1

mailto:pa.nanez49@uniandes.edu.co
mailto:nrisso@email.arizona.edu
mailto:sricardo@u.arizona.edu

tion 2 describes the type of hybrid systems considered here.
Section 3 presents as motivational example, a modified ver-
sion of the bouncing ball system, so as to illustrate the effect
of finite-precision arithmetic over hybrid systems solutions.
Pseudocode implemented for the proposed symbolic simula-
tor and its characteristics are presented in Section 4, which is
followed in Section 5 by the demonstration of the features of
the symbolic simulator in two examples.

All the files scripts required to replicate the results of this
paper are available at the author’s website

http://www.u.arizona.edu/∼sricardo/index.php?n=Main.Software.

2. PRELIMINARIES
Making use of the dynamical properties of hybrid systems

modeled as in [21, 22] and the framework of their simula-
tion in [1, 7], we present a simulation scheme that exploits
the advantages of the symbolic representation of solutions to
these systems. In this paper, a hybrid system H is given by
the hybrid equations

H : x ∈ Rn
{

ẋ = f (x) x ∈C
x+ = g(x) x ∈ D (1)

with the following objects defining its data: the set C ⊂ Rn

called the flow set; the function f : Rn → Rn called the flow
map; the set D⊂Rn called the jump set; the function g :Rn→
Rn called the jump map. These objects define the data of H ,
which is explicitly denoted as H = (f ,C,g,D).

The description in (1) supports the following natural no-
tion of solution. During flows, a solution to H satisfies the
continuous dynamics

ẋ = f (x) x ∈C (2)

over the intervals of flow while, at jumps, it satisfies the dis-
crete dynamics

x+ = g(x) x ∈ D. (3)

To make this notion precise, recall that solutions to
continuous-time systems are typically parameterized by t ∈
R≥0 := [0,∞) (e.g., by ordinary time). On the other hand,
solutions to discrete time systems are typically parameter-
ized by j ∈ N (e.g., by the number of steps or jumps), where
N := {0,1,2 . . .}. Combining these two ways of parameteriz-
ing time, solutions to H are parametrized by (t, j)∈R≥0×N
and are defined on hybrid time domains.

Definition 2.1 (hybrid time domain). A subset E ⊂R≥0×N
is a compact hybrid time domain if

E =
J−1⋃
j=0

([t j, t j+1], j) (4)

for some finite sequence of times 0 = t0 ≤ t1 ≤ . . . ≤
tJ . It is a hybrid time domain if for all (T,J) ∈ E, E ∩
([0,T]×{0,1, . . . ,J}) is a compact hybrid time domain.

To formally define the notion of solutions to H , first we
define hybrid arcs.

Definition 2.2 (hybrid arc) A function φ : E→Rn is a hybrid
arc if E is a hybrid time domain and if, for each j ∈ N, the
function t → φ(t, j) is locally absolutely continuous on the
interval I j := {t : (t, j) ∈ E}.

A hybrid arc is a solution to a hybrid system H as in (1) if it
satisfies certain conditions given by the system’s data and its
hybrid time domain domφ, as the following definition states.

Definition 2.3 (solution to a hybrid system) A hybrid arc φ :
domφ→ Rn is a solution to the hybrid system H if φ(0,0) ∈
C̄∪D, and:

(S1) (Flow condition) For all j ∈ N and all t ∈ int(I j)
2,

φ(t, j) ∈C, φ̇(t, j) = f (φ(t, j)), (5)

(S2) (Jump condition) For all (t, j) ∈ domφ such that (t, j+
1) ∈ domφ,

φ(t, j) ∈ D, φ(t, j+1) = g(φ(t, j)) (6)

3. MOTIVATIONAL EXAMPLE
Consider a variation of the widely known bouncing ball

example in hybrid systems literature (see, e.g., [22, Example
S4]). This hybrid system has state x ∈ R2 and data

f (x) :=
[

x2
−γ

]
, C :=

{
x ∈ R2 | x1 ≥ 0

}
(7a)

g(x) :=
[

0
−λx2

]
, D :=

{
x ∈ R2 | x1 ≤ 0, x2 ≤ 0

}
(7b)

where γ > 0 is the gravity constant and λ ∈ [0,2] is the resti-
tution coefficient. The state x1 corresponds to the height of
the ball from the floor and x2 represents the speed of the ball
(negative when falling). This system models a ball bouncing
on a floor at zero height. Now, consider the case when the
restitution coefficient λ is a function of the speed of the ball,
namely λ : R→ [0,2]. In particular, we consider the restitu-
tion coefficient given by the function λ(x2) = 1+sin(−x2/γ).

We select a particular initial condition such that the posi-
tion x1 of the system is periodic. For example, fix the initial
speed at zero x2(0,0) = 0. Then, we can solve for the initial
position x1(0,0) such that the ball hits the floor at t1 when
sin(−x2(t1,0)/γ) = 0. In such case, λ(x2(t1,0)) = 1, which
implies that its energy does not change at impacts. Then, the
ball takes τ = −x2(t1,0)/γ seconds to reach its initial height
and another τ seconds to hit the floor for the second time at
t2 = 3τ. It is easy to see that the subsequent impacts occur
at (2n+1)τ, n = 0,1,2, . . . and the ball bounces periodically

2int() denotes the interior of the set.

2

http://www.u.arizona.edu/~sricardo/index.php?n=Main.Software

0

100

200

300

400

500

−40

−20

0

20

40

−10

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

timex2

x1

Figure 1. Solution of the system obtained with a numerical
simulator. The color scale represents the number of jumps.

indefinitely. For example, for γ = 9.81, one such initial con-
dition is given by

x1(0,0) = (981π2)/200; x2(0,0) = 0

To simulate equations (7), which represent the bouncing ball
system described previously, we can use several tools such as
Modelica [2], Shift [4], Charon [5], Hysdel [6], among oth-
ers. These simulators perform numerical calculations to solve
the differential equations during flows, and evaluate the maps
that reset the states at jumps. Particularly, we are going to
solve this initial value problem using the Hybrid Equations
(HyEQ) Toolbox, which is described in [7]. After coding the
hybrid system data into the simulator, we obtain the numeri-
cal solution in Figure 13.

Due to the chosen initial conditions, the ball should hit
zero when sin(x2/γ) = 0, which is when x2/γ is a multiple of
(2n+1)π. However, since the numerical solution is not exact
at the first impact time, which should occur at π seconds, the
ball bounces with restitution coefficient close, but not exactly
equal to 1. This error is generated by the finite-precision rep-
resentation of sin(x2/γ). As a consequence, the subsequent
impacts do not occur at exactly (2n+ 1)π seconds. The ac-
cumulation of these errors generate the trajectory shown in
Figure 1, which differs from the actual solution to the sys-
tem; namely, the approximated numerical solution does not
match the true solution for t (and j) large enough as the in-
duced error accumulates and the bouncing loses its periodic
behavior. Notice that, due to the finite-precision representa-
tion introduced by every numerical ODE solver (no matter
how small the precision/tolerance or the time step selection
is), the obtained approximated numerical solution will differ
from the true solution of the system for t + j large enough.

3In order to solve numerically the differential equations, the Matlab’s
ODE45 was used with relative error tolerance “RelTol” equal to 1e-26 and
max step size “MaxStep” equal to 0.01.

Using the framework presented in the following sections,
the solutions to hybrid systems will be represented as sym-
bolic expressions. With this new simulation approach, the im-
pact times will be computed using a symbolic expression of
the solution of the differential equations in (1). This symbolic
representation does not induce finite-precision perturbations
in the computation of the impact time, yielding a simulation
that, for the particular case of the bouncing ball system above,
maintains the expected periodic property. See Example 5.2
for more details.

4. A SYMBOLIC SIMULATOR FOR
HYBRID SYSTEMS

In this section, we describe the algorithm developed to per-
form symbolic simulation of hybrid systems as in (1). First,
notice that the jump and flow sets in (1) may have overlaps.
In such case, the hybrid system may have multiple solutions
(e.g., a solution that flows and a solution that jumps at the
same hybrid time). For simulation purposes, we restrict this
feature of the hybrid systems in [21] with a priority rule when
C and D overlap. In other words, for points in C∩D, a priority
rule determines which solution is going to be simulated (the
flow solution or the jump solution). For further details on how
the overlaps of C and D can be analyzed, and how different
“semantics” can be enforced modifying the data of the hybrid
system (1), please refer to [1].

We will assume that the flow and jump sets C and D can be
represented by a union of sets Ck and Dk, respectively, where
each one of these sets can be described by a collection of
finitely many inequalities. Under this assumption, there exist
functions ck : Rn→ Rm and dk : Rn→ Rp such that

Ck := {x ∈ Rn|ck(x)≥ 0}, Dk := {x ∈ Rn|dk(x)≥ 0} (8)

where ck(x) ≥ 0 and dk(x) ≥ 0 denote that each component
of ck(x) and dk(x) is larger or equal than zero. Consequently,
given

C :=
KC⋃

k=1

Ck, D :=
KD⋃
k=1

Dk (9)

for some KC and KD
4, if x∗ belongs to the set C then ck∗(x∗)≥

0 for some k∗. Similarly for the jump set D. The sets in (8) are
employed in the simulation to determine when the computed
solution leaves or reaches the flow/jump sets of the hybrid
system. It is assumed that the flow and jump sets can be writ-
ten as a finite collection of inequalities. Note that the resulting
sets C and D in (9) might have overlaps.

To perform symbolic simulation for hybrid systems as
in (1), we need to perform the following four tasks:

4KC and KD values are given by the number of sets Ck and Dk required to
describe C and D, respectively.

3

i) Compute a closed-form expression of the solution to ini-
tial value problems for ẋ = f (x). In other words, solve
symbolically the ODE in (1).

ii) Detect when and where the solution of the system
reaches and/or leaves the sets C and/or D. In other words,
determine the time interval (which we denote [t j+1, tC

k])
where the closed-form expression of the solution to the
flow map belongs to C and the amount of time (which we
denote τk) to reach the jump set D (namely and the in-
equalities that describe the flow and jump sets ck(x)≥ 0
and dk(x)≥ 0 from Equations (8), respectively are satis-
fied).

iii) Compute the value of the solution after jumps given by
the evaluation of the jump map g.

iv) Given a priority for jump or flow and the intervals com-
puted in ii), select and construct the hybrid time domain
and the hybrid arc that define a solution to the hybrid
system.

Definition 4.1 (Initial value problem and its solution) An
initial value problem is given by an ODE together with a ini-
tial condition: Consider the ODE given by ẋ = f (x), where
f : C→ Rn is continuous and C ⊂ Rn, and the initial condi-
tion (x0, t0) ∈C×R≥0. A solution to this problem is given by
a continuously differentiable function ξ : [t0,∞)→ Rn satis-
fying ξ̇(t) = f (ξ(t)) ∀t ≥ t0 and ξ(t0) = x0.

In this paper, we assume the existence of a closed-form
solution for all the initial value problems derived from the
flow map f and the set C.

Assumption 4.2 (Existence of closed-form solutions dur-
ing flows) Consider the initial value problem (IVP) given
by the flow map ẋ = f (x) and the initial condition x0 ∈ C.
Assume that f is continuously differentiable and a solution
ξ : [0,∞)→ Rn for the initial value problem in closed-form5

exists for all x0 ∈C.

In other words, Assumption 4.2 assumes that the automatic
symbolic solver returns a solution of the differential equation
given by the flow map f and the initial condition x0, for all
x0 ∈C.

In Algorithm 1 below, we present the pseudocode proposed
to solve the four tasks to perform symbolic simulation. The
pseudocode is divided in four procedures. First, the variables
are introduced in procedure a). Then, the hybrid time domain
and hybrid arc are initialized in b). In the third procedure,
procedure c), the jump function is introduced. In procedure
d), the main simulation loop is presented.

5Here, we are going to use the term closed-form derived from the set of
well-known functions by the symbolic engine solver Matlab/MuPad.

Example 4.3 (pseudocode example) Consider a hybrid sys-
tem as in (1), assume that a solution φ flows during the inter-
val t0 to t1. Also, a jump is performed when t = t1. Assume
that x0 ∈C and x0 /∈ D and Assumption 4.2 holds. Following
the pseudocode presented in Algorithm 1, it is important to
highlight the following computations:

1. Compute the closed-form expression of ξ : [t0,∞)→ Rn

for the initial value problem (ẋ(t) = f (x) and x(t0) = x0)
such that φ(t,0) = ξ(t), t0 ≤ t ∈ I0 (line 43).

2. For each k ∈ {1, . . . ,KC}, compute the largest time in-
terval [t0, tC

k] such that ck(ξ(t)) ≥ 0, and t0 ≤ t ≤ tC
k

(line 49).

3. For each k ∈ {1, . . . ,KD}, compute the smallest time τk
such that dk(ξ(τk))≥ 0, and t0 ≤ τk (line 55).

4. Given the jump/flow priority, create a new time interval
[t0, t1] for the solution domain

• If jump is prioritized then the new time interval has
(line 60)

t1 = min
(

max
k=1,...,KC

(tC
k), min

k=1,...,KD
(τk)

)
(10)

• If flow is prioritized then the new time interval has
(line 63)

t1 = max
k=1,...,KC

(tC
k) (11)

5. At the end of the last interval a jump might be performed
since φ(t1,0) ∈ D. Consequently, add a new interval to
the hybrid time domain to represent the jump at (t1,1).
Also, add the function φ(t1,1) = g(φ(t1,0)) to the hybrid
arc (lines 70 and 74).

The Algorithm 1 is inspired by the structure of the numeri-
cal simulator HyEQsolver presented in the Hybrid Equations
(HyEQ) Toolbox [7]. The Algorithm 1 is implemented in a
Matlab script as a function called HyEQSimbolicSolver (not
part of the Hybrid Equations (HyEQ) Toolbox).

5. EXAMPLES
Example 5.1 (a hybrid system with a jump map with two

equilibrium points) Following [9, Example 2], consider the
hybrid system with state x ∈ R2 given by the hybrid equation
with data

f (x) :=
[

1
1

]
∀x ∈C (12)

g(x) :=

[
x2

111−
(

1130− 3000
x1

)
1
x2

]
∀x ∈ D (13)

4

Algorithm 1 HyEQ Symbolic Simulator
1: procedure a) VARIABLES DEFINITION. . Simulation

data
2: H := (f ,C,g,D) . hybrid system data
3: rule . priority rule, jump or flow,
4: t . time, t ∈ R≥0,
5: j . number of jumps,
6: I j := [t j, t j+1] . time interval,
7: t j . initial time of interval I j,
8: t j+1 . final time of interval I j,
9: (I j, j) . hybrid time domain,

10: φ : (I j, j)→ Rn . symbolic function for the interval I j,
11: ξ : [t j,∞)→ Rn . symbolic function,
12: x0 . initial condition,
13: [0,T] . simulation time span,
14: [0,J] . simulation jump span.
15: . The intervals I j are calculated

one interval at the time. The initial time t j for the interval
I j is equal to the final time for the previous interval I j−1
(for j = 0, it is the initial time t0). The final time t j+1 for
the interval I j is calculated symbolically given an initial
value problem and the inequalities that describe C and D.

16: end procedure
17: procedure b) HYBRID TIME DOMAIN (I j, j) AND HY-

BRID ARC φ INITIALIZATION
18: I j = [0,0], j = 0 . initial hybrid time domain
19: φ(I j, j) = x0 . symbolic function (constant)
20: end procedure
21: procedure c) CHECK FOR JUMPS (and jump function)
22: if rule = jump prioritized then
23: while j < J and k 6=−1 do
24: function JUMP(dk,φ(t j+1, j))
25: k=-1
26: for all dk, k ∈ {1, . . .KD} do . for all Dk
27: if dk(φ(t j+1, j))≥ 0 then. φ(t j+1, j) ∈D

28: k∗ = k
29: break for loop . end for loop
30: end if
31: end for
32: if dk∗(φ(t j+1, j))≥ 0 then . compute a jump
33: φ(I j+1, j+1) = g(φ(t j+1, j))
34: I j+1 = [t j+1, t j+1] . create a time interval
35: j = j+1 . add a jump
36: end if
37: end function
38: end while
39: end if
40: end procedure

41: procedure d) MAIN SIMULATION LOOP
42: while j < J, t j+1 < T do
43: ξ← Solve IVP ẋ = f (x), x(t j+1) = φ(t j+1, j), t ≥ t j+1
44: . IVP symbolic solver
45: for all ck, k ∈ {1, . . .KC} do . for all Ck sets
46: . check if it is possible to flow
47: if ck(φ(t j+1, j))≥ 0 then . if it can flow,
48: . then solve next equations together
49: Try: [t j+1, tC

k]← solve (ck(ξ(t))≥ 0, t ≥ t j+1)

50: . symbolic solver
51: end if
52: end for
53: for all dk, k ∈ {1, . . .KD} do . for all Dk sets,
54: . compute time to reach D
55: Try: τk← solve (dk(ξ(t))≥ 0, τk ≥ t j+1)

56: . symbolic solver
57: end for
58: if any flow is possible then. tC

k∗ exists for some k∗

59: if rule = jump prioritized then
60:

I j+1 =

[
t j+1,min

(
max

k=1,...,KC
(tC

k), min
k=1,...,KD

(τk)

)]

61: . it create a time interval
62: else if rule = flow prioritized then
63:

I j+1 =

[
t j+1, max

k=1,...,KC
(tC

k)

]

64: . it create a time interval
65: end if
66: φ(I j, j) = ξ . add ξ to the solution φ
67: end if
68: if rule = jump then. jump as many times as possible
69: while j < J and k 6=−1 do
70: function JUMP(dk,φ(t j+1, j))
71: end function
72: end while
73: else if rule = flow then . jump only once
74: function JUMP(dk,φ(t j+1, j))
75: end function
76: end if
77: if cannot flow or jump from φ(t j+1, j) then
78: end while . φ(t j+1, j) /∈C∪D
79: end if
80: end while
81: end procedure

5

where

C :=
{

x ∈ R2 | x1 ≤ a1, x2 ≤ a2
}

(14)

D :=
{

x ∈ R2 | x1 ≥ a1
}
∪
{

x ∈ R2 | x2 ≥ a2
}

(15)

for some constants a1 and a2, which define the shape of the
sets C and D. We can express the set C and D in (12) and (13)
as a set of inequalities as in (8). Thus, KC = 1, KD = 2 and

c1(x) :=−x+
[

a1
a2

]
(16)

d1(x) :=
[

1 0
0 0

]
x−
[

a1
a2

]
, d2(x) :=

[
0 0
0 1

]
x−
[

a1
a2

]
(17)

Notice that the jump map has an interesting feature. If x1
and x2 are equal to 6 (which we denote α∗) the function g
maps to the same point in R2. However, a small perturbation
around this point leads to consecutive jumps that get the state
away from α∗ and steer it to the point x1 = 100, x2 = 100
(which we denote ω∗), which is also an equilibrium point of
g.

Even more, there is a sequence of numbers which may be
computed with the difference equation given by χ(k+ 1) =
g(χ(k)), that, when computed using real numbers, approaches
α∗ (e.g., if the difference equation given by χ(k + 1) =
g(χ(k)) is initialized at χ1(0) = 11/2 and χ2(0) = 61/11, the
obtained sequence of numbers χ(k) tends to α∗ [9, Example
2]). These interesting features are due to the stability proper-
ties of the jump map6.

Now, let us consider two solutions for two sets of parame-
ters a1, a2 and two different initial conditions:

i) Take a1 = a2 = 6, and the initial conditions given by
x1(0,0) = 1 and x2(0,0) = 1.

ii) Take a1 = 11/2, a2 = 61/11, and the initial conditions
given by x1(0,0) = 11/2 and x2(0,0) = 6/11.

For both sets of parameters and initial conditions, due to the
dynamics of the hybrid system, it is expected that the solution
flows for 5 seconds. Then, for the i) case, the solution reaches
the point α∗ and keeps jumping at this point. For the sec-
ond set of parameters, after flowing for 5 seconds the solution
reaches the jump set at x1(5,0) = 11/2 and x2(5,0) = 61/11.
Then, the solution jumps towards the point α∗.

With this a priori knowledge of the system’s solutions, we
solve the hybrid system for both sets of parameters using a
numeric hybrid systems simulator [7] and with the symbolic
framework presented in this paper. We show the obtained so-
lutions in Figures 2(a) and 2(b). When the solution is com-
puted with the finite precision framework, no matter which
precision is used, an approximated value at the end of the flow

6It is possible to show that the equilibrium point α∗ is not Lyapunov stable
and the equilibrium point ω∗ is Lyapunov stable.

of the solution is obtained. This small perturbation drives the
sequences of jumps given by g far away from α∗ and towards
ω∗ for parameters as in i) and ii).

When computed with the symbolic framework, the end
point of the flow part of the solution is given by a symbolic
expression. Then, the sequence of jumps given by g converges
towards the point α∗ for the ii) case and remains in the point
α∗ for the i) case.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 20 40 60 80 100
0

20

40

60

80

100

x1x1

Symbolic simulation

x2x2

Numeric simulation

α∗

α∗

ω∗

(a) Solution of the system in Example 5.1, case i).

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 20 40 60 80 100
0

20

40

60

80

100

x1x1

Symbolic simulation

x2x2

Numeric simulation

α∗

α∗

ω∗

(b) Solution of the system in Example 5.1, case ii).

Figure 2. Simulation results using symbolic and numeric
simulators for the system in Example 5.1

Example 5.2 (Bouncing ball with speed dependent restitu-
tion coefficient.) We now revisit the bouncing ball in Sec-
tion 3, with state x ∈R2 given by the hybrid system with data
in (7a) and (7b). Notice that the flow set C and jump set D
can be expressed, according to (9), by a set of inequalities as
in (8). Thus, KC = KD = 1 and

c1(x) :=
[

1 0
0 0

]
x, d1(x) :=−x (18)

Considering restitution coefficient λ as a function of the
speed of the ball, as presented in Example 3, and initial con-
dition given by x1(0,0) = (981π2)/200 and x2(0,0) = 0,
results obtained with the symbolic simulator framework are
presented in Figure 3. Now, since calculations of the ball im-
pacts are performed using the symbolic representation, the
restitution coefficient remains unitary leading to the expected
periodic bouncing behavior.

6

0

100

200

300

400

500

−40

−20

0

20

40

−10

0

10

20

30

40

50

0

10

20

30

40

50

60

timex2

x1

Figure 3. Solution of the bouncing ball system in Example 3
obtained with the symbolic simulator. The color scale repre-
sents the number of jumps.

6. DISCUSSIONS
Some of the issues regarding hybrid systems simulation,

for cases where numerical precision is critical for accurate
system representation, as portrayed in Example 5.1, are
solved by the proposed symbolic simulation tool, with no
finite-precision perturbations introduced, leading to exact and
explicit solutions for the hybrid system. In this way, we
extended previous ideas on symbolic simulation under the
framework developed in [1, 7].

However, although the symbolic simulator proposed here
delivers precise mathematical results, the CPU time required
to perform symbolic calculations is still by far larger than the
CPU time required by numerical tools. We ran a performance
test for each simulator (numeric HyEQsolver and a Matlab
script based on algorithm HyEQSymbolicSolver presented
in this paper) which consisted of 5000 simulations. For this
performance test, we used the previously described bouncing
ball example with initial conditions as stated on Example 5.2,
but considering now a constant value for λ. The performance
test lead to an average execution time of 2.5411 seconds, with
a standard deviation of 0.0532 seconds, for the symbolic sim-
ulator. Same test performed using the numerical HyEQ simu-
lator reached average simulation time of 0.0351 seconds, with
standard deviation of 0.002 for the same system7.

It should be recognized that there exist some restrictions
for the types of systems that can effectively be solved sym-
bolically. In particular, for this work, the symbolic simulation
framework employed relies on the symbolic engine solver in

7Experiments ran on a 64 bit Intel Core i5−4200 (3M cache, 2.6 [Ghz])
processor, with 8 Gb of RAM, under Windows 8 operative system, using
Matlab R2013a.

Matlab R2013a (MuPad v5.10.0). Consequently, the family
of ODE equations that MuPad is capable to solve constraints
the family of hybrid systems that can be analyzed with the
framework proposed here. According to [23], the symbolic
engine is capable to solve the type of ODEs listed in Table 18

and some nonlinear equations. While [23] does not provide
conditions that the functions f and g need to satisfy, it is ex-
pected that symbolic solutions are only possible for a narrow
class of such functions.

Table 1. ODE automatically recognized by MuPad

Abel DE dy
dt = a0(t)+a1(t)y+a2(t)y2 +a3(t)y3

Bernoulli DE dy
dt + p(t)y = q(t)yn, n 6= 1, n 6= 0

Chini DE dy
dt = a0(t)+a1(t)y+a(t)yn

Clairaut DE y = t dy
dt +g

(
dy
dt

)
Exact first-order
ODE

dy
dt = f (t,y)

Exact second-order
ODE

d2y
dt2 = f

(
t,y, dy

dt

)
Linear homoge-
neous ODE

dny
dtn +a1(t)

dn−1y
dtn−1 + ...+an−2(t)

dy
dt +

an(t)y = 0

Lagrange DE y = t f
(

dy
dt

)
+g
(

dy
dt

)
Riccati DE dy

dt + p(t)y = q(t)y2 + r(t)

7. CONCLUSIONS
In this paper, symbolic simulation for hybrid systems is

studied. The tasks to perform such simulations are formulated
and an algorithm to calculate a solution to a hybrid system as
in (1) is presented. Making use of two examples, the effect
of perturbations induced by the finite-precision representa-
tion in numeric solvers is shown. For such systems, the ef-
fect of this perturbation makes the solution to be far different
from the true solution. In two examples, we show that with
the symbolic simulation approach proposed in this paper, so-
lutions obtained match the analytical solution. Also, restric-
tions of this approach are discussed and the benefits and draw-
backs compared to the numerical approaches are presented.
The simulation framework presented here may be useful to-
wards the development of integrated simulation and verifica-
tion tools for hybrid systems.

REFERENCES
[1] R. G. Sanfelice and A. R. Teel, “Dynamical proper-

ties of hybrid systems simulators,” Automatica, vol. 46,
no. 2, pp. 239–248, 2010.

[2] V. Sanz, A. Urquia, F. E. Cellier, and S. Dormido,
“Modeling of hybrid control systems using the DEVS-

8DE stands for differential equation and ODE for ordinary differential
equation.

7

Lib Modelica library,” Control Engineering Practice,
vol. 20, no. 1, pp. 24–34, 2012.

[3] G. Fábián, D. Van Beek, and J. Rooda, “Integration of
the discrete and the continuous behaviour in the hybrid
chi simulator,” in 1998 European Simulation Multicon-
ference, Manchester, 1998, pp. 252–257.

[4] M. Antoniotti and A. Gollu, “SHIFT and SMART-AHS:
A language for hybrid system engineering modeling
and simulation,” in conference on domain specific lan-
guages, 1997, pp. 171–182.

[5] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee, “Mod-
ular specification of hybrid systems in charon,” in Hy-
brid Systems: Computation and Control, ser. Lecture
Notes in Computer Science. Springer Berlin Heidel-
berg, 2000, vol. 1790, pp. 6–19.

[6] F. Torrisi and A. Bemporad, “Hysdel-a tool for gen-
erating computational hybrid models for analysis and
synthesis problems,” Control Systems Technology, IEEE
Transactions on, vol. 12, no. 2, pp. 235–249, March
2004.

[7] R. G. Sanfelice, D. A. Copp, and P. Nanez, “A toolbox
for simulation of hybrid systems in Matlab/Simulink:
Hybrid Equations (HyEQ) Toolbox,” in Proceedings of
Hybrid Systems: Computation and Control Conference,
2013, pp. 101–106.

[8] J. Lunze and F. Lamnabhi-Lagarrigue, Handbook of
Hybrid Systems Control: Theory, Tools, Applications.
Cambridge University Press, 2009.

[9] E. Goubault and S. Putot, “Static analysis of finite pre-
cision computations,” in Verification, Model Checking,
and Abstract Interpretation, ser. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2011, vol.
6538, pp. 232–247.

[10] C. Tomlin, I. Mitchell, A. Bayen, and M. Oishi, “Com-
putational techniques for the verification of hybrid sys-
tems,” Proceedings of the IEEE, vol. 91, no. 7, pp. 986–
1001, July 2003.

[11] Z. Yang, M. Wu, and W. Lin, “Exact safety verification
of interval hybrid systems based on symbolic-numeric
computation,” CoRR, vol. abs/1302.5974, 2013.

[12] R. Alur, A. Kanade, S. Ramesh, and K. C. Shashidhar,
“Symbolic analysis for improving simulation coverage
of simulink/stateflow models,” in Proceedings of the 8th
ACM International Conference on Embedded Software,
2008, pp. 89–98.

[13] D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn et al.,
“Interval-based solving of hybrid constraint systems,”
in Proceedings of the 3rd IFAC Conference on Analysis
and Design of Hybrid Systems, 2009, pp. 144–149.

[14] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “HyTech:
A model checker for hybrid systems,” in Computer
Aided Verification, ser. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 1997, vol. 1254, pp.
460–463.

[15] T. Bourke and M. Pouzet, “Zélus: a synchronous lan-
guage with odes,” in Proceedings of the 16th interna-
tional conference on Hybrid systems: computation and
control, 2013, pp. 113–118.

[16] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray,
O. Lebeltel, R. Ripado, A. Girard, T. Dang, and
O. Maler, “SpaceEx: Scalable verification of hybrid sys-
tems,” in Computer Aided Verification. Springer, 2011,
pp. 379–395.

[17] A. Donze and O. Maler, “Systematic simulation using
sensitivity analysis,” in Hybrid Systems: Computation
and Control, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2007, vol. 4416, pp. 174–
189.

[18] H. Elmqvist, S. E. Mattsson, and M. O. Otter, “Model-
ica - the new object-oriented modeling language,” in In
Proceedings of the 12th European Simulation Multicon-
ference, 1998, pp. 127–131.

[19] R.-J. Back, C. Seceleanu, and J. Westerholm, “Symbolic
simulation of hybrid systems,” in Software Engineering
Conference, 2002. Ninth Asia-Pacific, 2002, pp. 147–
155.

[20] T. Hickey and D. Wittenberg, “Rigorous modeling of
hybrid systems using interval arithmetic constraints,” in
Hybrid Systems: Computation and Control, ser. Lecture
Notes in Computer Science. Springer Berlin Heidel-
berg, 2004, vol. 2993, pp. 402–416.

[21] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dy-
namical Systems: Modeling, Stability, and Robustness.
Princeton University Press, 2012.

[22] ——, “Hybrid dynamical systems,” IEEE Control Sys-
temsMagazine, pp. 28–93, 2009.

[23] The MathWorks Inc., Symbolic Math Toolbox User’s
Guide, MathWorks, 3 Apple Hill Drive Natick, MA
01760-2098, September 2013.

8

	Introduction
	Preliminaries
	Motivational example
	A symbolic simulator for hybrid systems
	Examples
	Discussions
	Conclusions

