
Asymptotic Properties of Solutions to Set Dynamical Systems

Ricardo G. Sanfelice

Abstract— Dynamical systems with trajectories given by
sequences of sets are studied. For this class of generalized
systems, notions of solution, invariance, and omega limit sets
are defined. The structural properties of omega limit sets
are revealed. In particular, it is shown that for complete
and bounded solutions, the omega limit set of a bounded
and complete solution is nonempty, compact, and forward
invariant. Lyapunov-like conditions to locate omega limit sets
are also derived. Tools from the theory of set convergence
are conveniently used to prove the results. The findings are
illustrated in several examples and applications, including the
computation of reachable sets and forward invariant sets, and
propagation of uncertainty.

I. INTRODUCTION

This paper pertains to the study of a class of dynamical

systems with set dynamics. More precisely, we consider

systems in discrete time for which given an initial set X0 ⊂
R

n, a solution is given by the sequence of sets

X0,X1,X2, . . . Xj , . . . ⊂ R
n

where j ∈ {0, 1, 2 . . .}. As a difference to “classical”

dynamical systems, the value of the solution at each time

instant might be represented by a set, rather than a point.

As pointed out in [4], solutions with sets as values can

represent, in particular, the iterative computations of reach-

able sets in verification of “classical” dynamical systems as

well as in propagation of worst-case disturbances in their

dynamics, to just list a few.

Similar types of generalized dynamical systems were

considered in a few works in the literature. One of the

initial treatments of such systems appeared in [7] where

dynamical systems in general spaces were introduced as

generalized pseudo-dynamical systems and stability results

were presented (inspiration for the work in [7] was drawn

from the observations in [5]). In a series of subsequent

articles, a type of limit sets pertaining to the reachable set

and the prolongational limit of solutions to such systems

were studied in [8] and [9]; see also [12]. Contributions to

the understanding of such systems – though in very general

spaces and without data generating solutions – can be found

in the literature of generalized dynamical systems; see, e.g.,

[3]. Dynamical properties of continuous-time systems with

set-valued solutions were studied in [6], [1]. More recently,

in [2] a set-dynamics framework for the invariance of sets

under output feedback was proposed.
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The dynamical systems in this paper are given in Eu-

clidean space and have solutions that are explicitly gener-

ated by a set-valued map and a constraint set, which, in

particular, permit determining conditions that such objects

should satisfy for properties of solutions of interest to hold.

Very importantly, the proposed framework is amenable to

the use of the theory of set convergence in Euclidean space,

for which we employ tools from the variational analysis

literature, mainly [11]. In particular, we show that the

results in [11, Chapter 4] can be conveniently used to prove

properties of the solution set to dynamical systems with set-

valued solutions. We refer to such systems as set dynamical

systems.

After some preliminaries in Section II, we define the

class of systems of interest and their importance in Sec-

tion III. The dynamical properties of set dynamical systems

in discrete time are studied in Section IV. First, the struc-

tural properties of omega limit sets are revealed. In partic-

ular, we show that for complete and bounded solutions, the

omega limit set (in contrast to the definitions in [8], [9],

our definitions of omega limit sets follow the classical one)

of a bounded and complete solution is nonempty, compact,

and forward invariant. Lyapunov-like conditions to locate

omega limit sets are also derived. The results are illustrated

in applications in Section III, including the computation of

reachable sets and forward invariant sets, and propagation

of uncertainty, and in examples in Section V.

II. PRELIMINARIES

A. Notation

The following notation is used throughout the paper:

• R
n denotes n-dimensional Euclidean space, R denotes

the real numbers. R≥0 denotes the nonnegative real

numbers, i.e., R≥0 = [0,∞). N denotes the natural

numbers including 0, i.e., N = {0, 1, . . .}. B denotes

the closed unit ball in a Euclidean space.

• Given a set K , K denotes its closure.

• Given x ∈ R
n, |x| denotes the Euclidean vector norm.

Given a set K ⊂ R
n and x ∈ R

n, |x|K := infy∈K |x−
y|.

• Given a map G and N ∈ N, GN denotes N compo-

sitions of G, i.e., GN = G ◦G ◦ . . . ◦G︸ ︷︷ ︸
N

.

• A function α : R≥0 → R≥0 is said to belong to class-

K∞ if it is continuous, zero at zero, strictly increasing,

and unbounded.

• Given a function f : dom f → R and a constant

c ∈ R, its c-sublevel set is given by Lf (c) :=
{x ∈ dom f : f(x) ≤ c }.



B. Sequences of sets

Solutions to the class of dynamical systems considered

here will be given by sequences of sets. The following

limit notions of sequences of sets will be used to study the

asymptotic behavior of the solutions to such systems; see

[11, Chapter 4].

Definition 2.1 (inner and outer limit): Let {Ti}∞i=0 be a

sequence of sets in R
n.

• The inner limit of the sequence {Ti}∞i=0, denoted

lim infi→∞ Ti, is the set of all x ∈ R
n for which

there exist points xi ∈ Ti, i ∈ {1, 2, . . .} such that

limi→∞ xi = x;

• The outer limit of the sequence {Ti}∞i=0, denoted

lim supi→∞ Ti, is the set of all x ∈ R
n for which there

exist a subsequence {Tik}
∞
k=0 of {Ti}∞i=0 and points

xk ∈ Tik , k ∈ {1, 2, . . .} such that limk→∞ xk = x.

When the inner limit and the outer limit of the sequence

{Ti}∞i=0 are equal, the sequence is said to be convergent,

and its limit is given by

lim
i→∞

Ti = lim inf
i→∞

Ti = lim sup
i→∞

Ti

The inner and outer limits, which always exist, and the

limit of a sequence of sets, when it exists, are closed. The

following result from [11] establishes this property.

Proposition 2.2: ([11, Proposition 4.4]) For any se-

quence of sets {Ti}∞i=0 in R
n, both the inner limit

lim infi→∞ Ti and the outer limit lim supi→∞ Ti are

closed.

While the convergence of the sequence of sets {Ti}∞i=0

depends on whether its inner and outer limits coincide, it

is the case that it either “blows up” or has a convergent

subsequence. The following result from [11] establishes

this property. Below, it is said that {Ti}∞i=0 in R
n escapes

to the horizon if for each compact set K ⊂ R
n there exists

iK such that for each i > iK , Ti ∩K = ∅.

Theorem 2.3: ([11, Theorem 4.18]) Every subsequence

of nonempty sets {Ti}∞i=0 in R
n either escapes to the

horizon or has a subsequence converging to a nonempty

set T ⊂ R
n, i.e., there exists a subsequence {Tik}

∞
k=0 of

{Ti}∞i=0 such that limk→∞ Tik = T .

The following special case of the limit of a “sandwiched”

sequence of sets will be used throughout.

Proposition 2.4: ([11, Exercise 4.3(b)]) Let {Ti}∞i=0 in

R
n be a sequence of sets satisfying Ti ⊃ Ti+1 ⊃ Ti+2 ⊃

. . . . Then, the sequence has a limit, which is given by

lim
i→∞

Ti =
⋂

i∈N

Ti

Finally, we will say that a sequence of sets {Ti}∞i=0 in

R
n is eventually bounded (with respect to R

n) if, for some

i∗ ∈ N, ⋃

i≥i∗

Ti

is bounded. We say that it is bounded if it is eventually

bounded with i∗ = 0.

C. Set-valued maps

The right-hand side of the dynamical systems considered

in this paper are given by set-valued maps. A set-valued

map G mapping subsets of Rn into subsets of Rn is denoted

by G : Rn
⇒ R

n.

The following notions of set-valued maps will be em-

ployed. For more details on the continuity and boundedness

notions, see [11, Definition 5.4] and [11, Definition 5.14],

respectively.

Definition 2.5: Let G : Rn
⇒ R

n be a set-valued map.

• Given a set X ⊂ R
n, by G(X) we mean the following

set:

G(X) :=
⋃

x∈X

G(x) = {x′ ∈ G(x) : x ∈ X }

• G is outer semicontinuous at x ∈ R
n if for each

sequence {xi}∞i=1 converging to a point x ∈ R
n and

each sequence yi ∈ G(xi) converging to a point y,

it holds that y ∈ G(x). It is outer semicontinuous if

G(x) is outer semicontinuous at each x ∈ R
n.

• G is locally bounded if for each compact set K ⊂ R
n

there exists a compact set K ′ ⊂ R
n such that G(K) ⊂

K ′.

III. MODELING SET DYNAMICAL SYSTEMS

We consider dynamical systems of the form 1

X
+ = G(X) X ⊂ D (1)

where X ⊂ R
n is the set-valued state, G : Rn

⇒ R
n is

a set-valued map, and D ⊂ R
n. The map G defines the

evolution of the system for a given initial set X0 ⊂ R
n,

leading to solutions that are given by sequences of sets. The

set D defines a constraint that the solutions to the system

should satisfy. Due to the set-valuedness of its solutions,

we refer to this class of systems as set dynamical systems.

Definition 3.1 (solution to a set dynamical system): A

sequence of sets {Xj}Jj=0, J ∈ N ∪ {∞}, is a solution to

(1) if

Xj+1 = G(Xj)

Xj ⊂ D

for all j ∈ {0, 1, . . . , J}∩N. The first entry of the solution,

i.e., X0, represents the initial set.

If a solution has J = 0 then we say that it is trivial.

If a solution has J > 0 then we say that it is nontrivial.

If a solution has J = ∞ then we say that it is complete.

Given an initial set X0 ⊂ R
n, S(X0) denotes the set of

maximal solutions to (1) from X0, i.e., each element S(X0)
cannot be further extended. We use the convenient notation

X ∈ S(X0) to indicate that {Xj}
J
j=0 is a maximal solution

1The equality in (1) can be replaced by an inclusion ⊂, in which case
solutions would not be unique. For simplicity, we consider equality to
avoid (though possible but more tedious) the extra care needed when
dealing with nonuniqueness of solutions.



to (1) from X0. The domain of definition of a solution X

is denoted domX, which is a subset of {0, 1, . . . , J} ∩N.

Similarly, we write S to indicate the set of all maximal

solutions to (1).

Set dynamical systems emerge in a wide range of prob-

lems. The following applications illustrate a few of such

instances.

Application 3.2 (reachability and safety analysis):

Given the discrete-time system x+ ∈ G(x) and the set

of initial conditions X0 ⊂ R
n, the reachability problem

consists of computing the reachable set from X0 up to

J ∈ N ∪ {∞}. This problem reduces to the computation

of

reachj<J+1(X0) :=
⋃

j∈{0,1,...,J}∩N

G(Xj) (2)

where {Xj}Jj=0 is the solution to (1) with D = R
n from

X0 = X0. See [10] for a similar treatment for the linear

case using “set-dynamics.”

Now, suppose that one is interested in checking whether

all solutions to the discrete-time system x+ ∈ G(x) avoid

a given set U ⊂ R
n when they start away from it. This

problem corresponds to a reachability problem with a safety

specification. It can be recast as the problem of checking

if a set dynamical system as in (1) with G as given and

D = R
n \ U has complete solutions from every initial

condition set X0 ⊂ D. △

Application 3.3 (uncertainty propagation): Given the

discrete-time system x+ = g(x), the compact set of initial

conditions X0 ⊂ R
n, and the additive state-dependent

(bounded) perturbation d : R
n → R

n, consider the

problem of determining the worst-case effect of d on the

system’s right-hand side g along a solution that starts

from the initial set X0 and up to J ∈ N ∪ {∞}. This

problem reduces to the computation of the solutions to (1)

with G(X) = g(X) + supy∈X |d(y)|B and D = R
n from

X0 = X0. In fact, we want to determine

X0 = X0,

X1 = g(X0) + sup
y∈X0

|d(y)|B,

X2 = g(X1) + sup
y∈X1

|d(y)|B

= g(g(X0) + sup
y∈X0

|d(y)|B) + sup
y∈X1

|d(y)|B,

...

Xj = g(Xj−1) + sup
y∈Xj−1

|d(y)|B

...

which is a solution to (1). △

Application 3.4 (forward invariance of sets): Given the

discrete-time system x+ = g(x) and the set M ⊂ R
n,

determine if M is a (strongly) forward invariant set,

namely, that it has the property that for each x0 ∈ M,

every solution {xj}∞j=0 satisfies xk ∈ M for all k ∈ N.

This problem reduces to checking if every solution to (1)

with G = g and D = M is complete. In fact, if a solution

{Xj}Jj=0 to (1) with such data is not complete, then J < ∞
and

XJ 6⊂ D

Since D = M, then G(XJ−1)\M 6= ∅, which implies that

the set M is not forward invariant. Alternatively, forward

invariance of M can be studied by checking that (1) with

G = g and D = M has a nontrivial solution from X0 =
M. △

Remark 3.5: The set dynamical system (1) reduces to an

autonomous discrete-time system (with a state constraint

defined by D) when the initial set X0 is a singleton and G
is a single-valued map.

IV. DYNAMICAL PROPERTIES

This section pertains to the study of the dynamical

properties of set dynamical systems. Basic properties of its

solutions are presented in Section IV-A. In Section IV-B,

the asymptotic behavior of complete solutions is character-

ized in terms of omega limit sets. Lyapunov-like functions

are used in Section IV-C to study attractivity and stability

of sets.

Below, we will use the following definitions.

Definition 4.1 (forward invariance):

A set M ⊂ R
n is said to be forward invariant for (1) if

for every set T ⊂ M∩D we have

G(T ) ⊂ M∩D

Definition 4.2 (tail of reachable set): Given X0 ⊂ D
and i ∈ N, the reachable set for j ≥ i is given by

R≥i(X0) :=
⋃

j≥i, X∈S(X0)

Xj

The following notion is basically the boundedness prop-

erty of a sequence of sets introduced at the end of Sec-

tion II-B, but written in the context of solutions to (1) (and

uniform on time j).

Definition 4.3 (eventual uniform boundedness of (1)):

Given a set X0 ⊂ R
n, we say that (1) is eventually

uniformly bounded from X0 if there exist a compact set

K ⊂ R
n and a nonnegative integer i∗ such that

R≥i(X0) ⊂ K ∀i ≥ i∗

A. Structural properties of solutions

The properties of the set of solutions to a dynamical

system play a key role in the characterization of the asymp-

totic behavior of its solutions as well as the robustness to

perturbations. In this section, we determine basic properties

of the set of solutions S to (1). To this end, we will impose

the following mild assumption on the data (G,D) defining

(1).



Assumption 4.4: The data (G,D) of the set dynamical

system (1) satisfies the following properties:

(A0) The set-valued map G : Rn
⇒ R

n is outer semicon-

tinuous, locally bounded, and, for each x ∈ D, G(x)
is a nonempty subset of Rn.

(A1) The set D ⊂ R
n is closed.

The following auxiliary result will also be needed.

Lemma 4.5: Given a solution {Xj}
J
j=0 to (1) and any

subsequence {ji}Ii=0 of {j}Jj=0, we have

Xji = Gji (X0) ∀i ∈ {0, 1, . . . , I} (3)

Proposition 4.6: (basic properties of solutions) The fol-

lowing properties hold for system (1):

(B1) For any solution X to (1) and any j̄ ∈ domX we

have that X is a solution to (1), where domX =
{j : j + j̄ ∈ domX } and Xj = Xj+j̄ for all j ∈
domX;

(B2) Suppose the data (G,D) of (1) satisfies Assump-

tion 4.4. Let {Xi
0}

∞
i=0 be an eventually bounded (with

respect to R
n) sequence of sets converging to a

bounded set X0 and suppose {Xi}∞i=1 is such that

X
i ∈ S(Xi

0). Then, there exists a subsequence of

{Xi}∞i=0 converging to some X ∈ S(X0).

Assumption 4.4 is a tight assumption for the property

(B2) in Proposition 4.6 to hold. Examples 5.3 and 5.4

illustrate this fact.

B. Omega Limits and their Properties

The properties of the following limit sets (of solutions

and of sets of initial conditions) will be studied in this work.

Below, we consider solutions to (1) that are single valued,

namely, the initial set is a singleton and the resulting

solution is a sequence of points. Such solutions, which we

refer to as single-valued solutions, are denoted {xj}Jj=0,

J ∈ domx.

Definition 4.7 (limit sets):

• The ω-limit set of the single-valued solution {xj}Jj=0

to (1) is given by

ω({xj}
J
j=0) = {y ∈ R

n : ∃{ji}
∞
i=0, lim

i→∞
ji = ∞,

y = lim
i→∞

xji}

This is the “classical” ω-limit of a solution.

• The ω-limit set of a solution {Xj}Jj=0 to (1) is given

by

ω̃
(
{Xj}

J
j=0

)
= {Y ⊂ R

n : ∃{ji}
∞
i=0,

lim
i→∞

ji = ∞, Y = lim
i→∞

Xji}

Note that ω̃
(
{Xj}Jj=0

)
is a collection of sets.

• The Ω-limit set of the set X0 ⊂ R
n for single-valued

solutions {xj}Jj=0 to (1) from X0 is given by

Ω (X0) = {y ∈ R
n : y = lim

i→∞
xi
ji
,

lim
i→∞

ji = ∞, {xi}∞i=0 ∈ S(X0)}

This is the “classical” Ω-limit of a set.

• The Ω-limit set of the set X0 ⊂ R
n is given by

Ω̃ (X0) = {Y ⊂ R
n : Y = lim

i→∞
X

i
ji
,

lim
i→∞

ji = ∞, {Xi}∞i=0 ∈ S(X0)}

Note that Ω̃ (X0) is also a collection of sets.

Remark 4.8: The definitions of ω̃ and Ω̃ do not require

that the limit of the given solution exists, but rather, that

the limit of its subsequence(s) exist. Such a property is

guaranteed by Theorem 2.3 when the sequence of sets

defining the solution is eventually bounded.

The following proposition characterizes the properties of

ω̃, which is a limit set of particular interest in our work.

Proposition 4.9: (properties of ω̃) Suppose the data

(G,D) of (1) satisfies Assumption 4.4. Let {Xj}∞j=0 be

a bounded solution to it. Then, ω̃
(
{Xj}∞j=0

)
is nonempty,

compact, and forward invariant.

The omega limit set of a set satisfies the following

properties.

Proposition 4.10: (properties of Ω̃)

1) If (1) is eventually uniformly bounded from X0 then

Ω̃(X0) is nonempty and compact.

2) Let {Xj}∞j=0 be a bounded solution to (1). Then

ω̃({Xj}
∞
j=0) = Ω̃(X0) (4)

From their very definition, the limit set ω̃ of solutions in

terms of sequence of sets is closely related to “classical”

notion of the limit set of sets, i.e., Ω(X0). The following

result establishes their relationship.

Proposition 4.11: Let {Xj}∞j=0 be a bounded solution

to (1). Let Y be an element of the collection of sets

ω̃({Xj}∞j=0). We have the following equivalence:

x ∈ Y ⇐⇒ x ∈ Ω (X0)

C. Asymptotic behavior via Lyapunov-like functions

The purpose of this section is to locate the omega limit

set of solutions to (1) using Lyapunov-like functions. First,

we establish a result relating the asymptotic behavior of a

function that is nonincreasing along bounded solutions to

its omega limit set ω̃.

Lemma 4.12: Suppose a continuous function V : Rn →
R and a bounded (and nonempty) solution {Xj}∞j=0 to (1)

are such that the sequence of sets given by

Tj =

(
−∞, sup

x∈Xj

V (x)

]
j ∈ N (5)

is nonincreasing, i.e., Tj ⊃ Tj+1 ⊃ . . . for each j ∈ N.

Then, for some r ∈ R, V (ω̃
(
{Xj}∞j=0

)
) ⊂ (−∞, r].

This lemma enables the establishment of the following

result characterizing the omega limit set of bounded solu-

tions to (1). It exploits the existence of a Lyapunov-like

function.



Theorem 4.13: Suppose the data (G,D) of (1) satisfies

Assumption 4.4. Suppose there exists a continuous function

V : Rn → R such that

V (x) ≥ 0 ∀x ∈ D ∪G(D) (6)

and

V (η)− V (x) ≤ 0 ∀x ∈ D, η ∈ G(x) (7)

Then, every solution {Xj}Jj=0, J ∈ N ∪ {∞} to (1) from

X0 ⊂ D satisfies
[
0, sup

x∈Xj+1

V (x)

]
⊂

[
0, sup

x∈Xj

V (x)

]
(8)

for all j ∈ {0, 1, . . . , J − 1}∩N. Moreover, if J = ∞ then

lim
j→∞

[
0, sup

x∈Xj

V (x)

]
=
⋂

j∈N

[
0, sup

x∈Xj

V (x)

]
(9)

and if, furthermore, {Xj}∞j=0 is bounded then there exists

r ∈ R≥0 such that

V (ω̃
(
{Xj}

∞
j=0

)
) ⊂ [0, r] (10)

Remark 4.14: In light of the forward invariance of ω̃
shown in Proposition 4.9, property (10) guaranteed by

Theorem 4.13 suggest the search of invariant sets inside

intervals of the form [0, r], similar to invariance principles.

Remark 4.15: Note that condition (7) is in terms of

points in R
n. It can be replaced by the condition

V (G(T )) ⊂ V (T ) for all T ⊂ D, though it is a much

harder condition to check.

D. Asymptotic Stability-like Properties

Now, we explore the connection between stability of

(1) when standard stability (for systems with single-valued

solutions) holds.

Proposition 4.16: Suppose the data (G,D) of (1) satis-

fies Assumption 4.4. Let M ⊂ D be closed. Suppose there

exist a continuous function V : Rn → R≥0 and functions

α1, α2 ∈ K∞ such that

α1(|x|M) ≤ V (x) ≤ α2(|x|M) ∀x ∈ D ∪G(D) (11)

and

V (η)− V (x) ≤ 0 ∀x ∈ M, η ∈ G(x) (12)

V (η) ≤ γV (x) ∀x ∈ D \M, η ∈ G(x) (13)

for some γ ∈ [0, 1). Let X0 ⊂ D be compact. Then, for

each solution {Xj}Jj=0, J ∈ N∪ {∞} to (1) from X0 ⊂ D
there exists a sequence of positive numbers {ǫj}Jj=0 such

that

LV (cj+1) ⊂ LV (cj) (14)

LV (cj+1) + ǫjB ⊂ LV (cj) (15)

for all j ∈ {0, 1, . . . , J − 1} ∩ N, where cj =
maxx∈Xj

V (x). Moreover, if J = ∞ then

lim
j→∞

LV (cj) = M (16)

V. EXAMPLES

The following two examples provide concrete examples

of set dynamical systems and illustrate the solution concept

in Definition 3.1. Note that the first item in Definition 2.5

specifies the meaning of G(X). In particular, the operation

of G on its argument is pointwise (rather than on the set

itself2).

Example 5.1 (simple converging 1D system): Consider

G(X) =
{x
2

: x ∈ X

}
, D = R

A solution to (1) from X0 ⊂ R is given by

Xj =

{
X0 j = 0{
x
2 : x ∈ Xj−1

}
=:

Xj−1

2 j ≥ 1

=

{
X0 j = 0
X0

2j j ≥ 1
(17)

for each j ∈ N. Such a solution is complete (and hence,

nontrivial). Figure 1(a) depicts the first few elements of

such a solution from X0 = [0.5, 5].
Given X0 = [x0, x0] ⊂ R, x0 < x0, if D is replaced by

D = R \ {y}, y ∈ R then

1) If y ∈ [x0, x0], then there is no solution from X0;

2) If y < x0, then the solution is given by X in (17)

with domain {0, 1, 2, . . . , J∗} with J∗ ∈ N being

the smallest value such that x0/(2J
∗) ≤ y if y > 0,

while J∗ = ∞ if y < 0.

3) If x0 < y, then the solution is given by X in (17)

with domain {0, 1, 2, . . . , J∗} with J∗ ∈ N being

the smallest value such that x0/(2J
∗) ≥ y if y < 0,

while J∗ = ∞ if y > 0.

△

Example 5.2 (simple non-converging 1D system):

Consider

G(X) = {1− x : x ∈ X } , D = R

A solution to (1) from X0 =
[
1
2 , 1
]
⊂ R is given by

Xj =

{ [
1
2 , 1
]

j is zero or even[
1, 12
]

j is odd

for each j ∈ N. Such a solution is complete. Figure 1(b)

depicts the first few entries of such a solution. If D is

replaced by D =
[
1
2 , 1
]

then a solution from X0 =
[
1
2 , 1
]
⊂

R is given by

Xj =

{ [
1
2 , 1
]

j is zero or even{
1
2

}
j is odd

for each j ∈ N. Such a solution is also complete. △

The purpose of the following two examples is to show

that the assumptions of Lemma 4.5 are tight.

2An example of a set-valued map G that involves a set operation would
be G(X) = X if µ(X) 6= 0, and G(X) = 0 if µ(X) = 0, where µ is the
Lebesgue measure.
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Fig. 1. Solutions to the systems in Example 5.1 and Example 5.2.

Example 5.3: (No convergence of sequence of solutions

due to bad G) Consider (1) with

G(X) := [0, 1), D := [0, 1] (18)

For each i, the solution X
i from any initial set Xi

0 ⊂ D is

given by

X
i
j = [0, 1) ⊂ D ∀j ∈ N

Let {Xi
0}

∞
i=0 converge to a closed set X0 ⊂ D. Regardless

of the choice of X0, we have that, since G is constant, every

convergent subsequence of Xi converges to a sequence of

sets {Xj}∞i=0 satisfying

Xj = [0, 1] ∀j ∈ N

However, this (constant) sequence of sets is not a solution

to (1) with data as in (18) since, in particular, X1 6= G(X0)
(no matter the chosen closed set X0 ⊂ D). △

Example 5.4: (No convergence of sequence of solutions

due to bad D) Let α ∈ [0, 1) and consider (1) with

G(X) := {α(x − 1) + 1 : x ∈ X } , D := [0, 1) (19)

Note that for every X
i
0 := [xi

0, x
i
0] ⊂ D we have

X
i
j = [αj(xi

0 − 1) + 1, αj(xi
0 − 1) + 1] ⊂ D ∀j ∈ N

Let {Xi
0}

∞
i=0 converge to a closed set X0 ⊂ D. Regardless

of the choice of X0, we have that, since α ∈ [0, 1), every

convergent subsequence of X
i converges to X, where X

satisfies

Xj = {1} ∀j ∈ N

However, this (constant) sequence of sets is not a solution

to (1) with data as in (19) since X0 6⊂ D. △

VI. CONCLUSION

A mathematical model of dynamical systems with tra-

jectories given by sequences of sets in discrete time,

namely, set dynamical systems, was introduced. Notions

of solution, invariance, and omega limit sets (of solutions

and of sets) are introduced. The evolution of their solutions

over time and, in particular, their asymptotic behavior were

studied using results on convergence of sets. Properties of

the omega limit set of bounded and complete solutions

to set dynamical systems were characterized. Moreover,

Lyapunov-like conditions to locate omega limit sets were

also provided. It is envisioned that the stated properties

of the omega limit sets will facilitate determining the

regions to which the set-valued trajectories converge to.

Moreover, their structural properties are expected to aid

the computation of the trajectories, in particular, due to the

property of sequences of solutions in Proposition 4.6.
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