
Hybrid Equations (HyEQ) Toolbox v2.02

A Toolbox for Simulating Hybrid Systems in

MATLAB/Simulink R©
Ricardo G. Sanfelice

University of California
Santa Cruz, CA 95064

USA

David A. Copp
University of California

Santa Barbara, CA 93109
USA

Pablo Nanez
Universidad de Los Andes

Colombia

October 30, 2014

Abstract

This note describes the Hybrid Equations (HyEQ) Toolbox implemented in MATLAB/Simulink for
the simulation of hybrid dynamical systems. This toolbox is capable of simulating individual and inter-
connected hybrid systems where multiple hybrid systems are connected and interact such as a bouncing
ball on a moving platform, fireflies synchronizing their flashing, and more. The Simulink implementation
includes four basic blocks that define the dynamics of a hybrid system. These include a flow map, flow
set, jump map, and jump set. The flows and jumps of the system are computed by the integrator system
which is comprised of blocks that compute the continuous dynamics of the hybrid system, trigger jumps,
update the state of the system and simulation time at jumps, and stop the simulation. We also describe
a “lite simulator” which allows for faster simulation.

Contents

1 Introduction 2

2 Installation 3

3 Lite HyEQ Simulator: A stand-alone MATLAB code for simulation of hybrid systems
without inputs 3
3.1 Solver Function . 6

3.1.1 Events Detection . 10
3.1.2 Jump Map . 11

3.2 Software Requirements . 11
3.3 Configuration of Solver . 11
3.4 Initialization . 11
3.5 Postprocessing and Plotting solutions . 12

4 HyEQ Simulator: A Simulink implementation for simulation of single and interconnected
hybrid systems with or without inputs 13
4.1 The Integrator System . 14

4.1.1 CT Dynamics . 14
4.1.2 Jump Logic . 15
4.1.3 Update Logic . 16
4.1.4 Stop Logic . 16

4.2 Software Requirements . 17
4.2.1 Configuration of HyEQ Simulator with embedded functions for Windows 17
4.2.2 Configuration of HyEQ Simulator with embedded functions for Mac/Linux 18

4.3 Configuration of Integration Scheme . 20
4.4 Initialization . 20
4.5 Postprocessing and Plotting solutions . 21

5 Examples 22

1

6 Further Reading 35

7 Acknowledgments 36

8 References 36

1 Introduction

To get started, a webinar introducing the HyEQ Toolbox is available at
http://www.mathworks.com/videos/hyeq-a-toolbox-for-simulation-of-hybrid-dynamical-systems-81992.html

A free two-step registration is required by Mathworks.

A hybrid system is a dynamical system with continuous and discrete dynamics. Several mathematical
models for hybrid systems have appeared in literature. In this paper, we consider the framework for hybrid
systems used in [3,4], where a hybrid system H on a state space Rn with input space Rm is defined by the
following objects:
• A set C ⊂ Rn × Rm called the flow set.

• A function f : Rn × Rm → Rn called the flow map.

• A set D ⊂ Rn × Rm called the jump set.

• A function g : Rn × Rm → Rn called the jump map.

We consider the simulation in MATLAB/Simulink of hybrid systems H = (C, f,D, g) written as

H : x, u ∈ Rm
{
ẋ = f(x, u) (x, u) ∈ C
x+ = g(x, u) (x, u) ∈ D. (1)

The flow map f defines the continuous dynamics on the flow set C, while the jump map g defines the
discrete dynamics on the jump set D. These objects are referred to as the data of the hybrid system H,
which at times is explicitly denoted as H = (C, f,D, g). We illustrate this framework in a simple, yet rich
in behavior, hybrid system.

Example 1.1 (bouncing ball system) Consider a model for a bouncing ball written as

f(x) :=

[
x2
−γ

]
, C :=

{
x ∈ R2 | x1 ≥ 0

}
(2)

g(x) :=

[
0
−λx2

]
, D :=

{
x ∈ R2 | x1 ≤ 0 , x2 ≤ 0

}
(3)

where γ > 0 is the gravity constant and λ ∈ [0, 1) is the restitution coefficient. In this model, we consider
the ball to be bouncing on a floor at a height of 0. This model is re-visited as an example in Section 3 and
Section 5.

The remainder of this note is organized as follows. In Section 2, we describe how to install the HyEQ
Toolbox in MATLAB. In Section 3, we introduce the Lite HyEQ Simulator for solving hybrid systems
without inputs. In Section 4, we introduce the HyEQ Simulator implemented in Simulink for solving single
and interconnected hybrid systems with inputs. In Section 5, we work through several examples for the
simulation of single and interconnected hybrid systems. In Section 6, we give directions to where the
simulator files can be downloaded.

2

http://www.mathworks.com/videos/hyeq-a-toolbox-for-simulation-of-hybrid-dynamical-systems-81992.html

2 Installation

The following procedure describes how to install the Hybrid Equations (HyEQ) Toolbox in MATLAB. This
installation adds useful .m files to the MATLAB library and several blocks to the Simulink block library.

Steps for installation:

1. Download the HyEQ Toolbox from MATLAB Central or the author’s website at https://hybrid.

soe.ucsc.edu/software.

2. Extract all files and save in any place (except the root folder).

3. Open MATLAB and change the current folder to the folder where the install.m is located.

4. Type install in the command window and hit enter to run the file install.m.

5. Follow the on-screen prompts. Must answer yes to the question:

Add toolbox permanently into your startup path (highly recommended)? Y/E/N [Y]: y

6. Once installation has finished, close and then reopen MATLAB.

Now the HyEQ Toolbox is ready for use.
If you wish to uninstall the HyEQ Toolbox from MATLAB, simply run the tbclean.m file inside the

HyEQ Toolbox V2 02 folder, and follow the on-screen prompts.

3 Lite HyEQ Simulator: A stand-alone MATLAB code for sim-
ulation of hybrid systems without inputs

One way to simulate hybrid systems is to use ODE function calls with events in MATLAB (see, e.g., [2]).
Such an implementation gives fast simulation of a hybrid system.

In the lite HyEQ solver, four basic functions are used to define the data of the hybrid system H as in (1)
(without inputs):

• The flow map is defined in the MATLAB function f.m. The input to this function is a vector with
components defining the state of the system x. Its output is the value of the flow map f .

• The flow set is defined in the MATLAB function C.m. The input to this function is a vector with
components defining the state of the system x. Its output is equal to 1 if the state belongs to the set
C or equal to 0 otherwise.

• The jump map is defined in the MATLAB function g.m. Its input is a vector with components defining
the state of the system x. Its output is the value of the jump map g.

• The jump set is defined in the MATLAB function D.m. Its input is a vector with components defining
the state of the system x. Its output is equal to 1 if the state belongs to D or equal to 0 otherwise.

Our Lite HyEQ Simulator uses a main function run.m to initialize, run, and plot solutions for the simu-
lation, functions f.m, C.m, g.m, and D.m to implement the data of the hybrid system, and HyEQsolver.m

which will solve the differential equations by integrating the continuous dynamics, ẋ = f(x), and jumping by
the update law x+ = g(x). The ODE solver called in HyEQsolver.m initially uses the initial or most recent
step size, and after each integration, the algorithms in HyEQsolver.m check to see if the solution is in the
set C, D, or neither. Depending on which set the solution is in, the simulation is accordingly reset following
the dynamics given in f or g, or the simulation is stopped. This implementation is fast because it also does
not store variables to the workspace and only uses built-in ODE function calls.

Time and jump horizons are set for the simulation using TSPAN = [TSTART TFINAL] as the time interval
of the simulation and JSPAN = [JSTART JSTOP] as the interval for the number of discrete jumps allowed.
The simulation stops when either the time or jump horizon, i.e. the final value of either interval, is reached.

The example below shows how to use the HyEQ solver to simulate a bouncing ball.

3

https://hybrid.soe.ucsc.edu/software
https://hybrid.soe.ucsc.edu/software

Example 1.2 (bouncing ball with Lite HyEQ Solver) Consider the hybrid system model for the bouncing
ball with data given in Example 1.1.

For this example, we consider the ball to be bouncing on a floor at zero height. The constants for the
bouncing ball system are γ = 9.81 and λ = 0.8. The following procedure is used to simulate this example in
the Lite HyEQ Solver:

• Inside the MATLAB script run.m, initial conditions, simulation horizons, a rule for jumps, ode solver
options, and a step size coefficient are defined. The function HyEQsolver.m is called in order to run
the simulation, and a script for plotting solutions is included.

• Then the MATLAB functions f.m, C.m, g.m, D.m are edited according to the data given above.

• Finally, the simulation is run by clicking the run button in run.m or by calling run.m in the MATLAB
command window.

Example code for each of the MATLAB files run.m, f.m, C.m, g.m, and D.m is given below.

1 function run
2 % initial conditions
3 x1_0 = 1;
4 x2_0 = 0;
5 x0 = [x1_0;x2_0];
6 % simulation horizon
7 TSPAN=[0 10];
8 JSPAN = [0 20];
9 % rule for jumps

10 % rule = 1 -> priority for jumps
11 % rule = 2 -> priority for flows
12 rule = 1;
13 options = odeset(’RelTol’,1e-6,’MaxStep’,.1);
14 % simulate
15 [t,j,x] = HyEQsolver(@f,@g,@C,@D,x0,TSPAN,JSPAN,rule,options);
16 % plot solution
17 figure(1) % position
18 clf
19 subplot(2,1,1),plotflows(t,j,x(:,1))
20 grid on
21 ylabel(’x1’)
22 subplot(2,1,2),plotjumps(t,j,x(:,1))
23 grid on
24 ylabel(’x1’)
25 figure(2) % velocity
26 clf
27 subplot(2,1,1),plotflows(t,j,x(:,2))
28 grid on
29 ylabel(’x2’)
30 subplot(2,1,2),plotjumps(t,j,x(:,2))
31 grid on
32 ylabel(’x2’)
33 % plot hybrid arc
34 plotHybridArc(t,j,x)
35 xlabel(’j’)
36 ylabel(’t’)
37 zlabel(’x1’)

4

1 function xdot = f(x)
2 % state
3 x1 = x(1);
4 x2 = x(2);
5 % differential equations
6 xdot = [x2 ; -9.81];
7 end

1 function [value discrete] = C(x)
2 x1 = x(1);
3 if x1 >= 0
4 value = 1;
5 else
6 value = 0;
7 end
8 end

1 function xplus = g(x)
2 % state
3 x1 = x(1);
4 x2 = x(2);
5 xplus = [-x1 ; -0.8*x2];
6 end

1 function inside = D(x)
2 x1 = x(1);
3 x2 = x(2);
4 if (x1 <= 0 && x2 <= 0)
5 inside = 1;
6 else
7 inside = 0;
8 end
9 end

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.5

0

0.5

1

flows [t]

x
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−0.5

0

0.5

1

jumps [j]

x
1

(a) Height

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−5

0

5

flows [t]

x
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−5

0

5

jumps [j]

x
2

(b) Velocity

Figure 1: Solution of Example 1.2

5

0

5

10

15

200 1 2 3 4

0

0.5

1

j

t

x
1

Figure 2: Hybrid arc corresponding to a solution of Example 1.2: height

A solution to the bouncing ball system from x(0, 0) = [1, 0]> and with TSPAN = [0 10], JSPAN =
[0 20], rule = 1, is depicted in Figure 1(a) (height) and Figure 1(b) (velocity). Both the projection onto t
and j are shown. Figure 2 depicts the corresponding hybrid arc for the position state.

For MATLAB files of this example, see Examples/Example 1.2.

3.1 Solver Function

The solver function HyEQsolver solves the hybrid system using three different functions as shown below.
First, the flows are calculated using the built-in ODE solver function ODE45 in MATLAB. If the solution
leaves the flow set C, the discrete event is detected using the function zeroevents as shown in Section 3.1.1.
When the state jumps, the next value of the state is calculated via the jump map g using the function jump

as shown in Section 3.1.2.

1 function [t j x] = HyEQsolver(f,g,C,D,x0,TSPAN,JSPAN,rule,options)
2 %HYEQSOLVER solves hybrid equations.
3 % Syntax: [t j x] = HyEQsolver(f,g,C,D,x0,TSPAN,JSPAN,rule,options)
4 % computes solutions to the hybrid equations
5 %
6 % \dot{x} = f(x) x \in C xˆ+ = g(x) x \in D
7 %
8 % where x is the state, f is the flow map, g is the jump map, C is the
9 % flow set, and D is the jump set. It outputs the state trajectory (t,j)

10 % -> x(t,j), where t is the flow time parameter and j is the jump
11 % parameter.

6

12 %
13 % x0 defines the initial condition for the state.
14 %
15 % TSPAN = [TSTART TFINAL] is the time interval. JSPAN = [JSTART JSTOP] is
16 % the interval for discrete jumps. The algorithm stop when the first
17 % stop condition is reached.
18 %
19 % rule for jumps
20 % rule = 1 (default) -> priority for jumps rule = 2 -> priority for
21 % flows
22 %
23 % options - options for the solver see odeset f.ex.
24 % options = odeset(’RelTol’,1e-6);
25 %
26 % Example: Bouncing ball with Lite HyEQ Solver
27 %
28 % % Consider the hybrid system model for the bouncing ball with data given in
29 % % Example 1.2. For this example, we consider the ball to be bouncing on a
30 % % floor at zero height. The constants for the bouncing ball system are
31 % % \gamma=9.81 and \lambda=0.8. The following procedure is used to
32 % % simulate this example in the Lite HyEQ Solver:
33 %
34 % % * Inside the MATLAB script run_ex1_2.m, initial conditions, simulation
35 % % horizons, a rule for jumps, ode solver options, and a step size
36 % % coefficient are defined. The function HyEQsolver.m is called in order to
37 % % run the simulation, and a script for plotting solutions is included.
38 % % * Then the MATLAB functions f_ex1_2.m, C_ex1_2.m, g_ex1_2.m, D_ex1_2.m
39 % % are edited according to the data given below.
40 % % * Finally, the simulation is run by clicking the run button in
41 % % run_ex1_2.m or by calling run_ex1_2.m in the MATLAB command window.
42 %
43 % % For further information, type in the command window:
44 % helpview([’Example_1_2.html’]);
45 %
46 % % Define initial conditions
47 % x1_0 = 1;
48 % x2_0 = 0;
49 % x0 = [x1_0; x2_0];
50 %
51 % % Set simulation horizon
52 % TSPAN = [0 10];
53 % JSPAN = [0 20];
54 %
55 % % Set rule for jumps and ODE solver options
56 % %
57 % % rule = 1 -> priority for jumps
58 % %
59 % % rule = 2 -> priority for flows
60 % %
61 % % set the maximum step length. At each run of the
62 % % integrator the option ’MaxStep’ is set to
63 % % (time length of last integration)*maxStepCoefficient.
64 % % Default value = 0.1
65 %

7

66 % rule = 1;
67 %
68 % options = odeset(’RelTol’,1e-6,’MaxStep’,.1);
69 %
70 % % Simulate using the HyEQSolver script
71 % % Given the matlab functions that models the flow map, jump map,
72 % % flow set and jump set (f_ex1_2, g_ex1_2, C_ex1_2, and D_ex1_2
73 % % respectively)
74 %
75 % [t j x] = HyEQsolver(@f_ex1_2,@g_ex1_2,@C_ex1_2,@D_ex1_2,...
76 % x0,TSPAN,JSPAN,rule,options);
77 %
78 % % plot solution
79 %
80 % figure(1) % position
81 % clf
82 % subplot(2,1,1),plotflows(t,j,x(:,1))
83 % grid on
84 % ylabel(’x1’)
85 %
86 % subplot(2,1,2),plotjumps(t,j,x(:,1))
87 % grid on
88 % ylabel(’x1’)
89 %
90 % figure(2) % velocity
91 % clf
92 % subplot(2,1,1),plotflows(t,j,x(:,2))
93 % grid on
94 % ylabel(’x2’)
95 %
96 % subplot(2,1,2),plotjumps(t,j,x(:,2))
97 % grid on
98 % ylabel(’x2’)
99 %

100 % % plot hybrid arc
101 %
102 % plotHybridArc(t,j,x)
103 % xlabel(’j’)
104 % ylabel(’t’)
105 % zlabel(’x1’)
106 %
107 % % plot solution using plotHarc and plotHarcColor
108 %
109 % figure(4) % position
110 % clf
111 % subplot(2,1,1), plotHarc(t,j,x(:,1));
112 % grid on
113 % ylabel(’x_1 position’)
114 % subplot(2,1,2), plotHarc(t,j,x(:,2));
115 % grid on
116 % ylabel(’x_2 velocity’)
117 %
118 %
119 % % plot a phase plane

8

120 % figure(5) % position
121 % clf
122 % plotHarcColor(x(:,1),j,x(:,2),t);
123 % xlabel(’x_1’)
124 % ylabel(’x_2’)
125 % grid on
126 %
127 %--
128 % Matlab M-file Project: HyEQ Toolbox @ Hybrid Dynamics and Control Lab,
129 % http://www.u.arizona.edu/˜sricardo/index.php?n=Main.Software
130 % http://hybridsimulator.wordpress.com/
131 % Filename: HyEQsolver.m
132 %--
133 % See also plotflows, plotHarc, plotHarcColor, plotHarcColor3D,
134 % plotHybridArc, plotjumps.
135 % Copyright @ Hybrid Dynamics and Control Lab,
136 % Revision: 0.0.0.1 Date: 04/23/2014 10:48:24
137

138

139 if ˜exist(’rule’,’var’)
140 rule = 1;
141 end
142

143 if ˜exist(’options’,’var’)
144 options = odeset();
145 end
146

147 % simulation horizon
148 tstart = TSPAN(1);
149 tfinal = TSPAN(end);
150

151 % simulate
152 options = odeset(options,’Events’,@(t,x) zeroevents(x,C,D,rule));
153 tout = tstart;
154 xout = x0.’;
155 jout = JSPAN(1);
156 j = jout(end);
157

158 % Jump if jump is prioritized:
159 if rule == 1
160 while (j<JSPAN(end))
161 % Check if value it is possible to jump current position
162 insideD = D(xout(end,:).’);
163 if insideD == 1
164 [j tout jout xout] = jump(g,j,tout,jout,xout);
165 else
166 break;
167 end
168 end
169 end
170 fprintf(’Completed: %3.0f%%’,0);
171 while (j < JSPAN(end) && tout(end) < TSPAN(end))
172 % Check if it is possible to flow from current position
173 insideC = C(xout(end,:).’);

9

174 if insideC == 1
175 [t,x] = ode45(@(t,x) f(x),[tout(end) tfinal],xout(end,:).’, options);
176 nt = length(t);
177 tout = [tout; t];
178 xout = [xout; x];
179 jout = [jout; j*ones(1,nt)’];
180 end
181

182 %Check if it is possible to jump
183 insideD = D(xout(end,:).’);
184 if insideD == 0
185 break;
186 else
187 if rule == 1
188 while (j<JSPAN(end))
189 % Check if it is possible to jump from current position
190 insideD = D(xout(end,:).’);
191 if insideD == 1
192 [j tout jout xout] = jump(g,j,tout,jout,xout);
193 else
194 break;
195 end
196 end
197 else
198 [j tout jout xout] = jump(g,j,tout,jout,xout);
199 end
200 end
201 fprintf(’\b\b\b\b%3.0f%%’,max(100*j/JSPAN(end),100*tout(end)/TSPAN(end)));
202 end
203 t = tout;
204 x = xout;
205 j = jout;
206 fprintf(’\nDone\n’);
207 end

3.1.1 Events Detection

1 function [value,isterminal,direction] = zeroevents(x,C,D,rule)
2 isterminal = 1;
3 direction = -1;
4 insideC = C(x);
5 if insideC == 0
6 % Outside of C
7 value = 0;
8 elseif (rule == 1)
9 % If priority for jump, stop if inside D

10 insideD = D(x);
11 if insideD == 1
12 % Inside D, inside C
13 value = 0;
14 else
15 % outside D, inside C
16 value = 1;

10

17 end
18 else
19 % If inside C and not priority for jump or priority of jump and outside
20 % of D
21 value = 1;
22 end
23 end

3.1.2 Jump Map

1 function [j tout jout xout] = jump(g,j,tout,jout,xout)
2 % Jump
3 j = j+1;
4 y = g(xout(end,:).’);
5 % Save results
6 tout = [tout; tout(end)];
7 xout = [xout; y.’];
8 jout = [jout; j];
9 end

3.2 Software Requirements

In order to run simulations using the Lite HyEQ Simulator, MATLAB R13 or newer is required.

3.3 Configuration of Solver

Before a simulation is started, it is important to determine the needed integrator scheme, zero-cross detection
settings, precision, and other tolerances. Using the default settings does not always give the most efficient or
most accurate simulations. In the Lite HyEQ Simulator, these parameters are edited in the run.m file using

options = odeset(RelTol,1e-6,MaxStep ,.1);.

3.4 Initialization

The Lite HyEQ Simulator is initialized and run by calling the function run.m. Inside run.m, the initial
conditions, simulation horizons TSPAN and JSPAN, a rule for jumps, and simulation tolerances are defined.
After all of the parameters are defined, the function HyEQsolver is called, and the simulation runs. See
below for sample code to initialize and run the bouncing ball example, Example 1.2.

1 % initial conditions
2 x1_0 = 1;
3 x2_0 = 0;
4 x0 = [x1_0;x2_0];
5 % simulation horizon
6 TSPAN=[0,10];
7 JSPAN = [0,20];
8 % rule for jumps
9 % rule = 1 -> priority for jumps

10 % rule = 2 -> priority for flows
11 rule = 1;
12 options = odeset(’RelTol’,1e-6,’MaxStep’,.1);
13 % simulate

11

14 [t,j,x] = HyEQsolver(@f,@g,@C,@D,x0,TSPAN,JSPAN,rule,options);

3.5 Postprocessing and Plotting solutions

The function run.m is also used to plot solutions after the simulations is complete. See below for sample
code to plot solutions to the bouncing ball example, Example 1.2.

1 % plot solution
2 figure(1) % position
3 clf
4 subplot(2,1,1),plotflows(t,j,x(:,1))
5 grid on
6 ylabel(’x1’)
7 subplot(2,1,2),plotjumps(t,j,x(:,1))
8 grid on
9 ylabel(’x1’)

10 figure(2) % velocity
11 clf
12 subplot(2,1,1),plotflows(t,j,x(:,2))
13 grid on
14 ylabel(’x2’)
15 subplot(2,1,2),plotjumps(t,j,x(:,2))
16 grid on
17 ylabel(’x2’)
18 % plot hybrid arc
19 plotHybridArc(t,j,x)
20 xlabel(’j’)
21 ylabel(’t’)
22 zlabel(’x1’)

The following functions are used to generate the plots:

• plotflows(t,j,x): plots (in blue) the projection of the trajectory x onto the flow time axis t. The value
of the trajectory for intervals [tj , tj+1] with empty interior is marked with ∗ (in blue). Dashed lines (in
red) connect the value of the trajectory before and after the jump. Figure 10(a) shows a plot created
with this function.

• plotjumps(t,j,x): plots (in red) the projection of the trajectory x onto the jump time j. The initial
and final value of the trajectory on each interval [tj , tj+1] is denoted by ∗ (in red) and the continuous
evolution of the trajectory on each interval is depicted with a dashed line (in blue). Figure 10(a) shows
a plot created with this function.

• plotHybridArc(t,j,x): plots (in blue and red) the trajectory x on hybrid time domains. The intervals
[tj , tj+1] indexed by the corresponding j are depicted in the t − j plane (in red). Figure 11 shows a
plot created with this function.

• plotHarc is a function for plotting hybrid arcs (n states).

– plotHarc(t,j,x): plots the trajectory x versus the hybrid time domain (t, j). If x is a matrix, then
the time vector is plotted versus the rows or columns of the matrix, whichever line up.

– plotHarc(t,j,x,jstar): plots the trajectory x versus the hybrid time domain (t, j), and the plot is
cut regarding the jstar interval (jstar = [jinitial, jfinal]).

– plotHarc(t,j,x,jstar,modificator): Modificator is a cell array that contains the standard matlab
ploting modificators (type >> help plotHarc or >> helpwin plotHarc in the command window
for more information).

12

• plotHarcColor plots the trajectory x (vector) on hybrid time domain with color.

– plotHarcColor(t,j,x,L): plots the trajectory x (vector) versus the hybrid time domain (t, j). The
hybrid arc is plotted with L data as color. The input vectors t, j, x, L must have the same
length.

– plotHarcColor(t,j,x,L,jstar): If a specific interval in j is required, jstar = [jinitial, jfinal] must be
provided. (type >> help plotHarcColor or >> helpwin plotHarcColor in the command window
for more information)

• plotHarcColor3D plots an 3D hybrid arc with color.

– plotHarcColor3D(t,j,x,L) plots the trajectory x (3 states) taking into account the hybrid time
domain (t, j). The hybrid arc is plotted with L data as color. The input vectors t, j, x, L must
have the same length and x must have three columns.

– plotHarcColor3D(t,j,x,L,jstar) If a specific interval in j is required, jstar = [jinitial, jfinal] must
be provided.

– plotHarcColor3D(t,j,x,L,jstar,modificator) Modificator is a cell array that contains the standard
matlab ploting modificators (type >> help plotHarcColor3D or >> helpwin plotHarcColor3D in
the command window for more information).

4 HyEQ Simulator: A Simulink implementation for simulation
of single and interconnected hybrid systems with or without
inputs

The HyEQ Toolbox includes three main Simulink library blocks that allow for simulation of a hybrid system
H = (C, f,D, g) using either externally defined functions or embedded MATLAB functions, and a single
hybrid system or interconnected hybrid systems with inputs using embedded MATLAB functions. Figure 3
shows these blocks in the Simulink Library Browser.

HS with external

functions

HS with embedded

functions

HS with embedded

functions and inputs

Time

t

State

x

Jumps

jHS

x

t

j

Time

t

State

x

Jumps

jHS

x

t

j

u

Time

t

Terminator

State

x

Jumps

j

HSu

x

t

j

x (int)

u

Figure 3: MATLAB/Simulink library blocks for Simulink implementation.

13

This model simulates a hybrid system with input

x (int)

4

j

3

t

2

x

1

u

jump set D

x

u
v

D

jump map g

x

u

xplus

g

flow set C

x

u
v

C

flow map f

x

u

xdot

f

Time

t

Terminator

State

x

Jumps

j

Integrator System

f

C

g

D

x

t

j

x

HSu

x

t

j

x (int)

u

u1

1

Double Click

to Initialize

Double Click to

Plot Solutions

Figure 4: MATLAB/Simulink implementation of a hybrid system H = (C, f,D, g) with inputs.

Figure 4 shows a Simulink implementation for simulating a hybrid system with inputs using embedded
MATLAB functions. In this implementation, four basic blocks are used to define the data of the hybrid
system H:

• The flow map is implemented in an Embedded MATLAB function block executing the function f.m. Its
input is a vector with components defining the state of the system x, and the input u. Its output is
the value of the flow map f which is connected to the input of an integrator.

• The flow set is implemented in an Embedded MATLAB function block executing the function C.m. Its
input is a vector with components x− and input u of the Integrator system. Its output is equal to 1 if
the state belongs to the set C or equal to 0 otherwise. The minus notation denotes the previous value
of the variables (before integration). The value x− is obtained from the state port of the integrator.

• The jump map is implemented in an Embedded MATLAB function block executing the function g.m.
Its input is a vector with components x− and input u of the Integrator system. Its output is the value
of the jump map g.

• The jump set is implemented in an Embedded MATLAB function block executing the function D.m. Its
input is a vector with components x− and input u of the Integrator system. Its output is equal to 1 if
the state belongs to D or equal to 0 otherwise.

In our implementation, MATLAB .m files are used. The file initialization.m is used to define initial
variables before simulation. The file postprocessing.m is used to plot the solutions after a simulation is
complete. These two .m files are called by double-clicking the Double Click to... blocks at the top of the
Simulink Model (see Section 4.5 for more information on these .m files and their use).

4.1 The Integrator System

In this section we discuss the internals of the Integrator System shown in Figure 5.

4.1.1 CT Dynamics

This block is shown in Figure 6. It defines the continuous-time (CT) dynamics by assembling the time
derivative of the state [t j x>]>. States t and j are considered states of the system because they need to be

14

x

4

j

3

t

2

x

1

Update logic

g(x ,u)

j

t

update law

Stop logic

t

j

C

D

stop

Stop

Simulation

STOP

Jump logic

C

D

r

jump
1

s

xo

ICx0

[0; 0; x0(:)]

ICx

[x0]

CT dynamics

f(x,u) dot

D

4

g

3

C

2

f

1

Figure 5: Integrator System

updated throughout the simulation in order to keep track of the time and number of jumps. Without t and
j, solutions could not be plotted accurately. This is given by

ṫ = 1, j̇ = 0, ẋ = f(x, u) .

Note that input port 1 takes the value of f(x, u) through the output of the Embedded MATLAB function
block f in Figure 4.

dot

1

Jumps

0
Flows

1

f(x,u)

1

Figure 6: CT dynamics

4.1.2 Jump Logic

This block is shown in Figure 7. The inputs to the jump logic block are the output of the blocks C and D
indicating whether the state is in those sets or not, and a random signal with uniform distribution in [0, 1].
Figure 7 shows the Simulink blocks used to implement the Jump Logic. The variable rule defines whether
the simulator gives priority to jumps, priority to flows, or no priority. It is initialized in initialization.m.

The output of the Jump Logic is equal to one when:

• the output of the D block is equal to one and rule = 1,

• the output of the C block is equal to zero, the output of the D block is equal to one, and rule = 2,

• the output of the C block is equal to zero, the output of the D block is equal to one, and rule = 3,

• or the output of the C block is equal to one, the output of the D block is equal to one, rule = 3, and
the random signal r is larger or equal than 0.5.

15

Under these events, the output of this block, which is connected to the integrator external reset input,
triggers a reset of the integrator, that is, a jump of H. The reset or jump is activated since the configuration
of the reset input is set to “level hold”, which executes resets when this external input is equal to one (if the
next input remains set to one, multiple resets would be triggered). Otherwise, the output is equal to zero.

rule=1: out = D

rlule=2: out = D and ~C

rule=3: out = (D and ~C) or (D and C and r>0.5)

other : out = 0

jump

1

Multiport

Switch

1

2

3

*

AND
OR

NOT
AND

0

rule

Compare

To Constant

>= 0.5

r

3

D

2

C

1

Figure 7: Jump Logic

4.1.3 Update Logic

This block is shown in Figure 8. The update logic uses the state port information of the integrator. This
port reports the value of the state of the integrator, [t j x>]>, at the exact instant that the reset condition
becomes true. Notice that x− differs from x since at a jump, x− indicates the value of the state that triggers
the jump, but it is never assigned as the output of the integrator. In other words, “x ∈ D” is checked using
x− and if true, x is reset to g(x−, u). Notice, however, that u is the same because at a jump, u indicates the
next evaluated value of the input, and it is assigned as the output of the integrator. The flow time t is kept
constant at jumps and j is incremented by one. More precisely

t+ = t−, j+ = j− + 1, x+ = g(x−, u)

where [t− j− x−
>

]> is the state that triggers the jump.

update law

1

1

t−

3

j−

2

g(x−,u)

1

Figure 8: Update Logic

4.1.4 Stop Logic

This block is shown in Figure 9. It stops the simulation under any of the following events:

• The flow time is larger than or equal to the maximum flow time specified by T .

• The jump time is larger than or equal to the maximum number of jumps specified by J .

• The state of the hybrid system x is neither in C nor in D.

16

Under any of these events, the output of the logic operator connected to the Stop block becomes one, stopping
the simulation. Note that the inputs C and D are routed from the output of the blocks computing whether
the state is in C or D and use the value of x−.

stop

1

Logical

Operator1

OR

Logical

Operator

NOR

Jump Horizon, J

>= J

Flow Horizon, T

>= T

D

4

C

3

j

2

t

1

Figure 9: Stop Logic

4.2 Software Requirements

In order to run simulations of single hybrid systems using externally defined functions, MATLAB with
Simulink is required.

In order to run simulations using the HyEQ Simulator with embedded MATLAB functions, MAT-
LAB/Simulink and a supported ANSI, C, or C++ 32-bit compiler must be installed. We now briefly describe
how to install necessary compilers for Windows and Mac/Linux. For more information on supported com-
pilers, please visit http://www.mathworks.com/support/compilers/R2012b/win64.html.

4.2.1 Configuration of HyEQ Simulator with embedded functions for Windows

For 32-bit Windows, the LCC compiler is included with MATLAB. First, open MATLAB and then locate
and choose a compiler for building MEX-files by typing

>> mex -setup

into the MATLAB command window. Then, follow the prompts as shown below.

>> mex -setup

Welcome to mex -setup. This utility will help you set up

a default compiler. For a list of supported compilers, see

http://www.mathworks.com/support/compilers/R2012a/win32.html

Please choose your compiler for building MEX-files:

Would you like mex to locate installed compilers [y]/n? y

Select a compiler:

[1] Lcc-win32 C 2.4.1

[0] None

Compiler: 1

17

http://www.mathworks.com/support/compilers/R2012b/win64.html

Please verify your choices:

Compiler: Lcc-win32 C 2.4.1

Are these correct [y]/n? y

Done . . .

For 64-bit Windows, a C-compiler is not supplied with MATLAB. Before running the HyEQ Toolbox in
MATLAB/Simulink, please follow the following steps:

1. If you don’t have Microsoft .NET Framework 4 on your computer, download and install it from http:

//www.microsoft.com/en-us/download/details.aspx?id=17851.

2. Then download and install Microsoft Windows SDK from http://www.microsoft.com/en-us/download/

details.aspx?id=8279.

3. Then perform the steps outlined above for 32-bit Windows to setup and install the compiler.

As of October 10, 2013, when installing the toolbox in Windows 8, please follow the next steps.

1. If you don’t have Microsoft .NET Framework 4 on your computer, download and install it from http:

//www.microsoft.com/en-us/download/details.aspx?id=8279.

2. Then download and install Microsoft Windows SDK

• If you don’t have Visual C++ 2010 SP1 installed on your computer:

– Download and install Microsoft Windows SDK 7.1 from http://www.microsoft.com/en-us/

download/details.aspx?displaylang=en&id=4422

– Apply the following patch from Microsoft onto the SDK 7.1 installation: http://www.

microsoft.com/en-us/download/details.aspx?displaylang=en&id=4422

• If you have Visual Visual C++ 2010 SP1 or its redistributable packages installed on your com-
puter:

– Uninstall the Visual C++ 2010 redistributable packages, both x64 and x86 versions. This
can be done from Control Panel / Uninstall Programs Menu.

– Download and install Microsoft Windows SDK 7.1 from http://www.microsoft.com/en-us/

download/details.aspx?displaylang=en&id=4422

– Apply the following patch from Microsoft onto the SDK 7.1 installation: http://www.

microsoft.com/en-us/download/details.aspx?displaylang=en&id=4422

– Reinstall the Visual C++ 2010 redistributable packages:
x86 version: http://www.microsoft.com/en-us/download/details.aspx?id=5555
x64 version: http://www.microsoft.com/en-us/download/details.aspx?id=14632

3. Then perform the steps outlined above for 32-bit Windows to setup and install the compiler.

4.2.2 Configuration of HyEQ Simulator with embedded functions for Mac/Linux

From a terminal window, check that the file gcc is in the folder /usr/bin. If it is not there, make a symbolic
link. You might require to install the latest version of Xcode first. In order to generate a symbolic link
for gcc, that MATLAB can find to compile the simulation files (see http://www.mathworks.com/support/

sysreq/previous_releases.html), change folder to /usr/bin and then

sudo ln -s gcc gcc-4.2

Then, it should be possible to setup the gcc compiler in matlab as follows:

18

http://www.microsoft.com/en-us/download/details.aspx?id=17851
http://www.microsoft.com/en-us/download/details.aspx?id=17851
http://www.microsoft.com/en-us/download/details.aspx?id=8279
http://www.microsoft.com/en-us/download/details.aspx?id=8279
http://www.microsoft.com/en-us/download/details.aspx?id=8279
http://www.microsoft.com/en-us/download/details.aspx?id=8279
http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=4422
http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=4422
http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=4422
http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=4422
http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=4422
http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=4422
http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=4422
http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=4422
http://www.microsoft.com/en-us/download/details.aspx?id=5555
http://www.microsoft.com/en-us/download/details.aspx?id=14632
http://www.mathworks.com/support/sysreq/previous_releases.html
http://www.mathworks.com/support/sysreq/previous_releases.html

>> mex -setup

Options files control which compiler to use, the compiler and link command

options, and the runtime libraries to link against.

Using the ’mexsh -setup’ command selects an options file that is

placed in ~/.matlab/R2013b and used by default for ’mexsh’. An options

file in the current working directory or specified on the command line

overrides the default options file in ~/.matlab/R2013b.

To override the default options file, use the ’mexsh -f’ command

(see ’mexsh -help’ for more information).

The options files available for MEX are:

The options files available for mexsh are:

1: /Applications/MATLAB_R2013b.app/bin/mexopts.sh :

Template Options file for building MEX-files

0: Exit with no changes

Enter the number of the compiler (0-1): 1

Overwrite ~/.matlab/R2013b/mexopts.sh ([y]/n)?: Y

/Applications/MATLAB_R2013b.app/bin/mexopts.sh is being copied to

/SOME_FOLDER/mexopts.sh

At this point, it is possible to check if the gcc is properly setup by testing any of the Simulink examples
with embedded functions (see Figure 3) (e.g., Examples 1.3, 1.4, 1.5, 1.6, 1.7 or 1.8).

If an error regarding “gmake” and a warning “no such sysrooot directory: ′Developer/SDKs/MacOSX10.X.sdk′”
is shown when compiling, it is necesary to change some lines in the file “mexopts.sh” (copied previously in
the folder “SOME FOLDER”) .

First, locate the Xcode-SDK in your hard drive. Open a terminal window and execute the following
command

find ‘xcode-select -print-path‘ -name MacOSX10.9.sdk

which returns the location of MacOSX10.9.sdk, denoted here as SDK FOLDER. Now, in the MATLAB
command window locate the file “mexopts.sh” by typing

cd /SOME_FOLDER/

Then, open the file

edit mexopts.sh

and edit the lines

• SDKROOT=’/Developer/SDKs/MacOSX10.X.sdk’

to

SDKROOT=’SDK_FOLDER’

19

• CFLAGS="-fno-common -arch $ARCHS -isysroot $MW_SDKROOT

-mmacosx-version-min=$MACOSX_DEPLOYMENT_TARGET"

to

CFLAGS="-fno-common -arch $ARCHS -isysroot $MW_SDKROOT

-mmacosx-version-min=$MACOSX_DEPLOYMENT_TARGET -Dchar16_t=UINT16_T"

• Replace all the apparitions of 10.X to 10.9.

Finally, restart matlab and test any of the aforementioned Simulink examples.

4.3 Configuration of Integration Scheme

Before a simulation is started, it is important to determine the needed integrator scheme, zero-cross de-
tection settings, precision, and other tolerances. Using the default settings does not always give the most
efficient or most accurate simulations. One way to edit these settings is to open the Simulink Model, select
Simulation>Configuration Parameters>Solver, and change the settings there. We have made this simple
by defining variables for configuration parameters in the initialization.m file. The last few lines of the
initialization.m file look like that given below.

1 %configuration of solver
2 RelTol = 1e-8;
3 MaxStep = .001;

In these lines, “RelTol = 1e-8” and “MaxStep = .001” define the relative tolerance and maximum step
size of the ODE solver, respectively. These parameters greatly affect the speed and accuracy of solutions.

4.4 Initialization

When the block labeled Double Click to Initialize at the top of the Simulink Model is double-clicked, the
simulation variables are initialized by calling the script initialization.m. The script initialization.m

defines the initial conditions by defining the initial values of the state components, any necessary parameters,
the maximum flow time specified by T , the maximum number of jumps specified by J , and tolerances used
when simulating. These can be changed by editing the script file initialization.m. See below for sample
code to initialize the bouncing ball example, Example 1.3.

1 % initialization for bouncing ball example
2 clear all
3 % initial conditions
4 x0 = [1;0];
5 % simulation horizon
6 T = 10;
7 J = 20;
8 % rule for jumps
9 % rule = 1 -> priority for jumps

10 % rule = 2 -> priority for flows
11 % rule = 3 -> no priority, random selection when simultaneous conditions
12 rule = 1;
13 %configuration of solver
14 RelTol = 1e-8;

It is important to note that variables called in the Embedded MATLAB function blocks must be added as
inputs and labeled as “parameters”. This can be done by opening the Embedded MATLAB function block
selecting Tools>Edit Data/Ports and setting the scope to Parameter.

After the block labeled Double Click to Initialize is double-clicked and the variables initialized, the
simulation is run by clicking the run button or selecting Simulation>Start.

20

4.5 Postprocessing and Plotting solutions

A similar procedure is used to define the plots of solutions after the simulation is run. The solutions can
be plotted by double-clicking on the block at the top of the Simulink Model labeled Double Click to Plot
Solutions which calls the script postprocessing.m. The script postprocessing.m may be edited to include
the desired postprocessing and solution plots. See below for sample code to plot solutions to the bouncing
ball example, Example 1.3.

1 %postprocessing for the bouncing ball example
2 % plot solution
3 figure(1)
4 clf
5 subplot(2,1,1),plotflows(t,j,x)
6 grid on
7 ylabel(’x’)
8 subplot(2,1,2),plotjumps(t,j,x)
9 grid on

10 ylabel(’x’)
11 % plot hybrid arc
12 plotHybridArc(t,j,x)
13 xlabel(’j’)
14 ylabel(’t’)
15 zlabel(’x’)

The following functions are used to generate the plots:

• plotflows(t,j,x): plots (in blue) the projection of the trajectory x onto the flow time axis t. The value
of the trajectory for intervals [tj , tj+1] with empty interior is marked with ∗ (in blue). Dashed lines (in
red) connect the value of the trajectory before and after the jump. Figure 10(a) shows a plot created
with this function.

• plotjumps(t,j,x): plots (in red) the projection of the trajectory x onto the jump time j. The initial
and final value of the trajectory on each interval [tj , tj+1] is denoted by ∗ (in red) and the continuous
evolution of the trajectory on each interval is depicted with a dashed line (in blue). Figure 10(a) shows
a plot created with this function.

• plotHybridArc(t,j,x): plots (in blue and red) the trajectory x on hybrid time domains. The intervals
[tj , tj+1] indexed by the corresponding j are depicted in the t − j plane (in red). Figure 11 shows a
plot created with this function.

• plotHarc is a function for plotting hybrid arcs (n states).

– plotHarc(t,j,x): plots the trajectory x versus the hybrid time domain (t, j). If x is a matrix, then
the time vector is plotted versus the rows or columns of the matrix, whichever line up.

– plotHarc(t,j,x,jstar): plots the trajectory x versus the hybrid time domain (t, j), and the plot is
cut regarding the jstar interval (jstar = [jinitial, jfinal]).

– plotHarc(t,j,x,jstar,modificator): Modificator is a cell array that contains the standard matlab
ploting modificators (type >> help plotHarc or >> helpwin plotHarc in the command window
for more information).

• plotHarcColor plots the trajectory x (vector) on hybrid time domain with color.

– plotHarcColor(t,j,x,L): plots the trajectory x (vector) versus the hybrid time domain (t, j). The
hybrid arc is plotted with L data as color. The input vectors t, j, x, L must have the same
length.

21

– plotHarcColor(t,j,x,L,jstar): If a specific interval in j is required, jstar = [jinitial, jfinal] must be
provided. (type >> help plotHarcColor or >> helpwin plotHarcColor in the command window
for more information)

• plotHarcColor3D plots an 3D hybrid arc with color.

– plotHarcColor3D(t,j,x,L) plots the trajectory x (3 states) taking into account the hybrid time
domain (t, j). The hybrid arc is plotted with L data as color. The input vectors t, j, x, L must
have the same length and x must have three columns.

– plotHarcColor3D(t,j,x,L,jstar) If a specific interval in j is required, jstar = [jinitial, jfinal] must
be provided.

– plotHarcColor3D(t,j,x,L,jstar,modificator) Modificator is a cell array that contains the standard
matlab ploting modificators (type >> help plotHarcColor3D or >> helpwin plotHarcColor3D in
the command window for more information).

5 Examples

The examples below illustrate the use of the Simulink implementation above.

Example 1.3 (bouncing ball with input) For the simulation of the bouncing ball system with a constant
input and regular data given by

f(x, u) :=

[
x2
−γ

]
, C :=

{
(x, u) ∈ R2 × R | x1 ≥ u

}
(4)

g(x, u) :=

[
u
−λx2

]
, D :=

{
(x, u) ∈ R2 × R | x1 ≤ u , x2 ≤ 0

}
(5)

where γ > 0 is the gravity constant, u is the input constant, and λ ∈ [0, 1) is the restitution coefficient. The
MATLAB scripts in each of the function blocks of the implementation above are given as follows. An input
was chosen to be u(t, j) = 0.2 for all (t, j). The constants for the bouncing ball system are γ = 9.81 and
λ = 0.8.

The following procedure is used to simulate this example with HyEQsimulator.mdl:

• HyEQsimulator.mdl is opened in MATLAB/Simulink.

• The Embedded MATLAB function blocks f, C, g, D are edited by double-clicking on the block and
editing the script. In each embedded function block, parameters must be added as inputs and defined
as parameters by selecting Tools>Edit Data/Ports, and setting the scope to Parameter. For this
example, gamma and lambda are defined in this way.

• The initialization script initialization.m is edited by opening the file and editing the script. The
flow time and jump horizons, T and J are defined as well as the initial conditions for the state vector,
x0, and input vector, u0, and a rule for jumps, rule.

• The postprocessing script postprocessing.m is edited by opening the file and editing the script. Flows
and jumps may be plotted by calling the functions plotflows and plotjumps, respectively. The hybrid
arc may be plotted by calling the function plotHybridArc.

• The simulation stop time and other simulation parameters are set to the values defined in initialization.m

by selecting Simulation>Configuration Parameters>Solver and inputting T , RelTol, MaxStep,
etc..

• The masked integrator system is double-clicked and the simulation horizons and initial conditions are
set as desired.

22

• The block labeled Double Click to Initialize is double-clicked to initialize variables.

• The simulation is run by clicking the run button or selecting Simulation>Start.

• The block labeled Double Click to Plot Solutions is double-clicked to plot the desired solutions.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

flows [t]

x
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.2

0.4

0.6

0.8

1

jumps [j]

x
1

(a) Height

0 0.5 1 1.5 2 2.5 3 3.5 4
−4

−2

0

2

4

flows [t]

x
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−4

−2

0

2

4

jumps [j]

x
2

(b) Velocity

Figure 10: Solution of Example 1.3

1 function xdot = f(x, u, gamma)
2 % state
3 x1 = x(1);
4 x2 = x(2);
5 % flow map: xdot=f(x,u);
6 xdot = [x(2); gamma];

1 function v = C(x, u)
2 % flow set
3 if (x(1) >= u(1)) % flow condition
4 v = 1; % report flow
5 else
6 v = 0; % do not report flow
7 end

1 function xplus = g(x, u, lambda)
2 % jump map
3 xplus = [u(1); -lambda*x(2)];

1 function v = D(x, u)
2 % jump set
3 if (x(1) <= u(1)) && (x(2) <= 0) % jump condition
4 v = 1; % report jump
5 else
6 v = 0; % do not report jump
7 end

A solution to the bouncing ball system from x(0, 0) = [1, 0]> and with T = 10, J = 20, rule = 1, is
depicted in Figure 10(a) (height) and Figure 10(b) (velocity). Both the projection onto t and j are shown.

23

0

5

10

15

200 1 2 3

0

0.5

1

j

t

x
1

Figure 11: Hybrid arc corresponding to a solution of Example 1.3: height

Figure 11 depicts the corresponding hybrid arc for the position state.
These simulations reflect the expected behavior of the bouncing ball model. Note the only difference

between this example and the example of a bouncing ball without a constant input is that, in this example,
the ball bounces on a platform at a height of the chosen input value 0.2 rather than the ground at a value
of 0.

For MATLAB/Simulink files of this example, see Examples/Example 1.3.

Example 1.4 (alternate way to simulate the bouncing ball)
Consider the bouncing ball system with a constant input and regular data as given in Example 1.3. This

example shows that a MATLAB function block, such as the jump set D, can be replaced with operational
blocks in Simulink. Figure 12 shows this implementation. The other functions and solutions are the same
as in Example 1.3.

For MATLAB/Simulink files corresponding to this alternative implementation, see Examples/Exam-
ple 1.4.

Example 1.5 (vehicle following a track with boundaries) Consider a vehicle modeled by a Dubins vehicle
model traveling along a given track with state vector x = [ξ1, ξ2, ξ3]> with dynamics given by ξ̇1 = u cos ξ3,
ξ̇2 = u sin ξ3, and ξ̇3 = −ξ3+r(q). The input u is the tangential velocity of the vehicle, ξ1 and ξ2 describe the
vehicle’s position on the plane, and ξ3 is the vehicle’s orientation angle. Also consider a switching controller
attempting to keep the vehicle inside the boundaries of a track given by {(ξ1, ξ2) : −1 ≤ ξ1 ≤ 1}. A state
q ∈ {1, 2} is used to define the modes of operation of the controller. When q = 1, the vehicle is traveling to
the left, and when q = 2, the vehicle is traveling to the right. A logic variable r is defined in order to steer
the vehicle back inside the boundary. The state of the closed-loop system is given by x := [ξ> q]>. A model

24

This model simulates a hybrid system with input

x (int)

4

j

3

t

2

x

1

u

jump map g

x

u

xplus

g

flow set C

x

u
v

C

flow map f

x

u

xdot

f

Time

t

Terminator

State

x

<=

<=

AND

Jumps

j

Integrator System

f

C

g

D

x

t

j

x

HSu

x

t

j

x (int)

u

u1

1

Double Click

to Initialize

Double Click to

Plot Solutions

Figure 12: Simulink implementation of bouncing ball example with operator blocks

of such a closed-loop system is given by

f(x, u) :=


 u cos(ξ3)

u sin(ξ3)
−ξ3 + r(q)


u

 , r(q) :=

{
3π
4 if q = 1
π
4 if q = 2

(6)

C :=
{

(ξ, u) ∈ R3 × {1, 2} × R | (ξ1 ≤ 1, q = 2) or (ξ1 ≥ −1, q = 1)
}
, (7)

g(ξ, u) :=


[
ξ
2

]
if ξ1 ≤ −1, q = 1[

ξ
1

]
if ξ1 ≥ 1, q = 2

, (8)

D :=
{

(ξ, u) ∈ R3 × {1, 2} × R | (ξ1 ≥ 1, q = 2) or (ξ1 ≤ −1, q = 1)
}

(9)

The MATLAB scripts in each of the function blocks of the implementation above are given as follows.
The tangential velocity of the vehicle is chosen to be u = 1, the initial position on the plane is chosen to be
(ξ1, ξ2) = (0, 0), and the initial orientation angle is chosen to be ξ3 = π

4 radians.
1 function xdot = f(x, u)
2 % state
3 xi = z(statevect);
4 xi1 = xi(1); %x-position
5 xi2 = xi(2); %y-position
6 xi3 = xi(3); %orientation angle
7 q = xi(4);
8 % q = 1 --> going left
9 % q = 2 --> going right

10 if q == 1
11 r = 3*pi/4;
12 elseif q == 2
13 r = pi/4;

25

0 5 10 15
−2

−1

0

1

2

flows [t]

x
i1

0 1 2 3
−2

−1

0

1

2

jumps [j]

x
i1

(a) Trajectory

0123

0
2

4
6

8
10

12
14

−1

0

1

t

j

x
i1

(b) Hybrid arc

Figure 13: Solution of Example 1.5

14 else
15 r = 0;
16 end
17 % flow map: xidot=f(xi,u);
18 xi1dot = u*cos(xi3); %tangential velocity in x-direction
19 xi2dot = u*sin(xi3); %tangential velocity in y-direction
20 xi3dot = -xi3 + r; %angular velocity
21 qdot = 0;
22 xdot = [xi1dot;xi2dot;xi3dot;qdot];

1 function v = C(x, u)
2 % state
3 xi = z(statevect);
4 xi1 = xi(1); %x-position
5 xi2 = xi(2); %y-position
6 xi3 = xi(3); %orientation angle
7 q = xi(4);
8 % q = 1 --> going left
9 % q = 2 --> going right

10 % flow set
11 if ((xi1 < 1) && (q == 2)) || ((xi1 > -1) && (q == 1)) % flow condition
12 v = 1; % report flow
13 else
14 v = 0; % do not report flow
15 end

1 function xplus = g(x, u)
2 % state
3 xi = z(statevect);
4 xi1 = xi(1); %x-position
5 xi2 = xi(2); %y-position
6 xi3 = xi(3); %orientation angle
7 q = xi(4);
8 % q = 1 --> going left

26

9 % q = 2 --> going right
10 xi1plus=xi1;
11 xi2plus=xi2;
12 xi3plus=xi3;
13 qplus=q;
14 % jump map
15 if ((xi1 >= 1) && (q == 2)) || ((xi1 <= -1) && (q == 1))
16 qplus = 3-q;
17 else
18 qplus = q;
19 end
20 xplus = [xi1plus;xi2plus;xi3plus;qplus];

1 function v = D(x, u)
2 % state
3 xi = z(statevect);
4 xi1 = xi(1); %x-position
5 xi2 = xi(2); %y-position
6 xi3 = xi(3); %orientation angle
7 q = xi(4);
8 % q = 1 --> going left
9 % q = 2 --> going right

10 % jump set
11 if ((xi1 >= 1) && (q == 2)) || ((xi1 <= -1) && (q == 1)) % jump condition
12 v = 1; % report jump
13 else
14 v = 0; % do not report jump
15 end

A solution to the system of a vehicle following a track in {(ξ1, ξ2) : −1 ≤ ξ1 ≤ 1}, and with T = 15, J = 10,
rule = 1, is depicted in Figure 13(a) (trajectory). Both the projection onto t and j are shown. Figure 13(b)
depicts the corresponding hybrid arc.

For MATLAB/Simulink files of this example, see Examples/Example 1.5.

Example 1.6 (interconnection of hybrid systems H1 (bouncing ball) and H2 (moving platform)) Consider
a bouncing ball (H1) bouncing on a platform (H2) at some initial height and converging to the ground at
zero height. This is an interconnection problem because the current states of each system affect the behavior
of the other system. In this interconnection, the bouncing ball will contact the platform, bounce back up,
and cause a jump in height of the platform so that it gets closer to the ground. After some time, both the
ball and the platform will converge to the ground. In order to model this system, the output of the bouncing
ball becomes the input of the moving platform, and vice versa. For the simulation of the described system
with regular data where H1 is given by

f1(ξ, u1, v1) :=

[
ξ2

−γ − bξ2 + v11

]
, C1 := {(ξ, u1) | ξ1 ≥ u1, u1 ≥ 0} (10)

g1(ξ, u1, v1) :=

[
ξ1 + α1ξ

2
2

e1|ξ2|+ v12

]
, D1 := {(ξ, u1) | ξ1 = u1, u1 ≥ 0} , y1 = h1(ξ) := ξ1 (11)

where γ, b, α1 > 0, e1 ∈ [0, 1), ξ = [ξ1, ξ2]> is the state, y1 ∈ R is the output, u1 ∈ R and v1 = [v11, v12]> ∈ R2

are the inputs, and the hybrid system H2 is given by

27

f2(η, u2, v2) :=

[
η2

−η1 − 2η2 + v12

]
, C2 := {(η, u2) | η1 ≤ u2, η1 ≥ 0} (12)

g2(η, u2, v2) :=

[
η1 − α2|η2|
−e2|η2|+ v22

]
, D2 := {(η, u2) | η1 = u2, η1 ≥ 0} , y2 = h2(η) := η1 (13)

where α2 > 0, e2 ∈ [0, 1), η = [η1, η2]> ∈ R2 is the state, y2 ∈ R is the output, and u2 ∈ R and v2 =
[v21, v22]> ∈ R2 are the inputs.

Therefore, the interconnection may be defined by the input assignment

u1 = y2, u2 = y1. (14)

The signals v1 and v2 are included as external inputs in the model in order to simulate the effects of
environmental perturbations, such as a wind gust, on the system.

The MATLAB scripts in each of the function blocks of the implementation above are given as follows.
The constants for the interconnected system are γ = 0.8, b = 0.1, and α1, α2 = 0.1.

This model simulates the interconnection
of two hybrid systems; a bouncing ball and a moving platform.

v22

v21

v12

v11

state1

x3

state

x

More Info

HS_2

x u

HS_1

xu

Double Click

to Initialize

Double Click to

Plot Solutions

Figure 14: MATLAB/Simulink implementation of interconnected hybrid systems H1 and H2

For hybrid system H1:
1 function xdot = f(x, u)
2 % state
3 xi1 = x(1);
4 xi2 = x(2);
5 %input
6 y2 = u(1);

28

0 2 4 6 8 10 12 14 16 18
0.2

0.4

0.6

0.8

1

flows [t]

x
i1

,
e

ta
1

0 2 4 6 8 10 12 14 16 18
−1

−0.5

0

0.5

1

flows [t]

x
i2

,
e

ta
2

Figure 15: Solution of Example 1.6: height and velocity

7 v11 = u(2);
8 v12 = u(3);
9 % flow map

10 %xdot=f(x,u);
11 xi1dot = xi2;
12 xi2dot = -0.8-0.1*xi2+v11;
13 xdot = [xi1dot;xi2dot];

1 function v = C(x, u)
2 % state
3 xi1 = x(1);
4 xi2 = x(2);
5 %input
6 y2 = u(1);
7 v11 = u(2);
8 v12 = u(3);
9 if (xi1 >= y2) % flow condition

10 v = 1; % report flow
11 else
12 v = 0; % do not report flow
13 end

1 function xplus = g(x, u)
2 % state
3 xi1 = x(1);
4 xi2 = x(2);

29

0 2 4 6 8 10 12 14 16 18
0.2

0.4

0.6

0.8

1

flows [t]

x
i1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.2

0.4

0.6

0.8

1

jumps [j]

x
i1

(a) Height

0 2 4 6 8 10 12 14 16 18
−1

−0.5

0

0.5

1

flows [t]

x
i2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−1

−0.5

0

0.5

1

jumps [j]

x
i2

(b) Velocity

Figure 16: Solution of Example 1.6 for system H1

5 %input
6 y2 = u(1);
7 v11 = u(2);
8 v12 = u(3);
9 %jump map

10 xi1plus=y2+0.1*xi2ˆ2;
11 xi2plus=0.8*abs(xi2)+v12;
12 xplus = [xi1plus;xi2plus];

1 function v = D(x, u)
2 % state
3 xi1 = x(1);
4 xi2 = x(2);
5 %input
6 y2 = u(1);
7 v11 = u(2);
8 v12 = u(3);
9 % jump set

10 if (xi1 <= y2) % jump condition
11 v = 1; % report jump
12 else
13 v = 0; % do not report jump
14 end

For hybrid system H2:
1 function xdot = f(x, u)
2 % state
3 eta1 = x(1);
4 eta2 = x(2);
5 %input
6 y1 = u(1);
7 v21 = u(2);
8 v22 = u(3);
9 % flow map

30

0 2 4 6 8 10 12 14 16 18
0.2

0.3

0.4

0.5

flows [t]

e
ta

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.2

0.3

0.4

0.5

jumps [j]

e
ta

1

(a) Height

0 2 4 6 8 10 12 14 16 18
−0.1

−0.05

0

0.05

0.1

flows [t]

e
ta

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−0.1

−0.05

0

0.05

0.1

jumps [j]

e
ta

2

(b) Velocity

Figure 17: Solution of Example 1.6 for system H2

10 eta1dot = eta2;
11 eta2dot = -eta1-2*eta2+v21;
12 xdot = [eta1dot;eta2dot];

1 function v = C(x, u)
2 % state
3 eta1 = x(1);
4 eta2 = x(2);
5 %input
6 y1 = u(1);
7 v21 = u(2);
8 v22 = u(3);
9 % flow set

10 if (eta1 <= y1) % flow condition
11 v = 1; % report flow
12 else
13 v = 0; % do not report flow
14 end

1 function xplus = g(x, u)
2 % state
3 eta1 = x(1);
4 eta2 = x(2);
5 %input
6 y1 = u(1);
7 v21 = u(2);
8 v22 = u(3);
9 % jump map

10 eta1plus = y1-0.1*abs(eta2);
11 eta2plus = -0.8*abs(eta2)+v22;
12 xplus = [eta1plus;eta2plus];

1 function v = D(x, u)
2 % state

31

3 eta1 = x(1);
4 eta2 = x(2);
5 %input
6 y1 = u(1);
7 v21 = u(2);
8 v22 = u(3);
9 % jump set

10 if (eta1 >= y1) % jump condition
11 v = 1; % report jump
12 else
13 v = 0; % do not report jump
14 end

A solution to the interconnection of hybrid systems H1 and H2 with T = 18, J = 20, rule = 1, is depicted
in Figure 15. Both the projection onto t and j are shown. A solution to the hybrid system H1 is depicted
in Figure 16(a) (height) and Figure 16(b) (velocity). A solution to the hybrid system H2 is depicted in
Figure 17(a) (height) and Figure 17(b) (velocity).

These simulations reflect the expected behavior of the interconnected hybrid systems.
For MATLAB/Simulink files of this example, see Examples/Example 1.6.

Example 1.7 (biological example: synchronization of two fireflies) Consider a biological example of the
synchronization of two fireflies flashing. The fireflies can be modeled mathematically as periodic oscillators
which tend to synchronize their flashing until they are flashing in phase with each other. A state value of
τi = 1 corresponds to a flash, and after each flash, the firefly automatically resets its internal timer (periodic
cycle) to τi = 0. The synchronization of the fireflies can be modeled as an interconnection of two hybrid
systems because every time one firefly flashes, the other firefly notices and jumps ahead in its internal timer
τ by (1 + ε)τ , where ε is a biologically determined coefficient. This happens until eventually both fireflies
synchronize their internal timers and are flashing simultaneously. Each firefly can be modeled as a hybrid

This model simulates interconnected hybrid systems.

time1

t2

time

t1

state1

x2

state

x1

jumps1

j2

jumps

j1

Hybrid System 2

x

t

j

x (int)

u

Hybrid System 1

x

t

j

x (int)

u

Double Click

to Initialize

Double Click to

Plot Solutions

Figure 18: Interconnection Diagram for Example 1.7

32

system given by

fi(τi, ui) := 1, (15)

Ci :=
{

(τi, ui) ∈ R2 | 0 ≤ τi ≤ 1
}
∩
{

(τi, ui) ∈ R2 | 0 ≤ ui ≤ 1
}

(16)

gi(τi, ui) :=

{
(1 + ε)τi (1 + ε)τi < 1
0 (1 + ε)τi ≥ 1

(17)

Di :=
{

(τi, ui) ∈ R2 | τi = 1
}
∪
{

(τi, ui) ∈ R2 | ui = 1
}
. (18)

The interconnection diagram for this example is simpler than in the previous example because now no
external inputs are being considered. The only event that affects the flashing of a firefly is the flashing of
the other firefly. The interconnection diagram can be seen in Figure 18.

0 2 4 6 8 10 12
0

0.5

1

1.5

flows [t]

ta
u
1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

jumps [j]

ta
u
1

(a) Solution for system H1

0 2 4 6 8 10 12
0

0.5

1

1.5

flows [t]

ta
u
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

jumps [j]

ta
u
2

(b) Solution for system H2

Figure 19: Solution of Example 1.7

For hybrid system Hi, i = 1, 2:
1 function taudot = f(tau, u)
2 % flow map
3 taudot = 1;

1 function v = C(tau, u)
2 % flow set
3 if ((tau > 0) && (tau < 1)) || ((u > 0) && (u <= 1)) % flow condition
4 v = 1; % report flow
5 else
6 v = 0; % do not report flow
7 end

1 function tauplus = g(tau, u)
2 % jump map
3 if (1+e)*tau < 1
4 tauplus = (1+e)*tau;
5 elseif (1+e)*tau >= 1
6 tauplus = 0;
7 else
8 tauplus = tau;
9 end

33

0 2 4 6 8 10 12
0

0.5

1

1.5

flows [t]

ta
u

1
,

ta
u

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

jumps [j]

ta
u

1
,

ta
u

2

Figure 20: Solution of Example 1.7 for interconnection of H1 and H2

1 function v = D(tau, u)
2 % jump set
3 if (u >= 1) || (tau >= 1) % jump condition
4 v = 1; % report jump
5 else
6 v = 0; % do not report jump
7 end

A solution to the interconnection of hybrid systems H1 and H2 with T = 15, J = 15, rule = 1, ε = 0.3
is depicted in Figure 20. Both the projection onto t and j are shown. A solution to the hybrid system H1

is depicted in Figure 19(a). A solution to the hybrid system H2 is depicted in Figure 19(b).
These simulations reflect the expected behavior of the interconnected hybrid systems. The fireflies initially

flash out of phase with one another and then synchronize to flash in the same phase.
For MATLAB/Simulink files of this example, see Examples/Example 1.7.

Example 1.8 (a simple mathematical example to show different type of simulation results) Consider the
hybrid system with data

f(x) := −x, C := [0, 1], g(x) := 1 + mod(x, 2), D := {1} ∪ {2} .

Note that solutions from ξ = 1 and ξ = 2 are nonunique. The following simulations show the use of the
variable rule in the Jump Logic block.

Jumps enforced:

34

A solution from x0 = 1 with T = 10, J = 20, rule = 1 is depicted in Figure 21(a). The solution jumps
from 1 to 2, and from 2 to 1 repetitively.

Flows enforced:

A solution from x0 = 1 with T = 10, J = 20, rule = 2 is depicted in Figure 21(b). The solution flows for
all time and converges exponentially to zero.

Random rule:

A solution from x0 = 1 with T = 10, J = 20, rule = 3 is depicted in Figure 21(c). The solution jumps to
2, then jumps to 1 and flows for the rest of the time converging to zero exponentially.

Enlarging D to

D := [1/50, 1] ∪ {2}

causes the overlap between C and D to be “thicker”. The simulation result is depicted in Figure 21(d) with
the same parameters used in the simulation in Figure 21(c). The plot suggests that the solution jumps several
times until x < 1/50 from where it flows to zero. However, Figure 21(e), a zoomed version of Figure 21(d),
shows that initially the solution flows and that at (t, j) = (0.2e− 3, 0) it jumps. After the jump, it continues
flowing, then it jumps a few times, then it flows, etc. The combination of flowing and jumping occurs while
the solution is in the intersection of C and D, where the selection of whether flowing or jumping is done
randomly due to using rule = 3.

This simulation also reveals that this implementation does not precisely generate hybrid arcs. The
maximum step size was set to 0.1e − 3. The solution flows during the first two steps of the integration of
the flows with maximum step size. The value at t = 0.1e − 3 is very close to 1. At t = 0.2e − 3, instead of
assuming a value given by the flow map, the value of the solution is about 0.5, which is the result of the jump
occurring at (0.2e− 3, 0). This is the value stored in x at such time by the integrator. Note that the value
of x′ at (0.2e− 3, 0) is the one given by the flow map that triggers the jump, and if available for recording,
it should be stored in (0.2e− 3, 0). This is a limitation of the current implementation.

The following simulations show the Stop Logic block stopping the simulation at different events.

Solution outside C ∪D:

Taking D = {1}, a simulation starting from x0 = 1 with T = 10, J = 20, rule = 1 stops since the solution
leaves C ∪D. Figure 22(a) shows this.

Solution reaches the boundary of C from where jumps are not possible:

Replacing the flow set by [1/2, 1] a solution starting from x0 = 1 with T = 10, J = 20 and rule = 2 flows
for all time until it reaches the boundary of C where jumps are not possible. Figure 22(b) shows this.

Note that in this implementation, the Stop Logic is such that when the state of the hybrid system is not
in (C ∪D), then the simulation is stopped. In particular, if this condition becomes true while flowing, then
the last value of the computed solution will not belong to C. It could be desired to be able to recompute
the solution so that its last point belongs to the corresponding set. From that point, it should be the case
that solutions cannot be continued.

For MATLAB/Simulink files of this example, see Examples/Example 1.8.

6 Further Reading

Installation files for the HyEQ Toolbox described in this paper can be found at MATLAB Central and at
the author’s website

https://hybrid.soe.ucsc.edu/software.

35

https://hybrid.soe.ucsc.edu/software

Also, resources and examples are shared by the HyEQ Toolbox users in the blog

http://hybridsimulator.wordpress.com.

7 Acknowledgments

We would like to thank Giampiero Campa for his thoughtful feedback and advice as well as Torstein Inge-
brigtsen Bo for his comments and initial version of the lite simulator code.

8 References

[1] R. G. Sanfelice, D. A. Copp, and P. Nanez “A Toolbox for Simulation of Hybrid Systems in Mat-
lab/Simulink: Hybrid Equations (HyEQ) Toolbox”, Proceedings of Hybrid Systems: Computation and
Control Conference, pp. 101–106, 2013.
[2] http://control.ee.ethz.ch/~ifaatic/ex/example1.m. Institut für Automatik - Automatic Control
Laboratory, ETH Zurich, 2011.
[3] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid dynamical systems. IEEE Control Systems Magazine,
28-93, 2009.
[4] R. G. Sanfelice and A. R. Teel, Dynamical Properties of Hybrid Systems Simulators. Automatica, 46,
No. 2, 239–248, 2010.
[5] Sanfelice, R. G., Interconnections of Hybrid Systems: Some Challenges and Recent Results Journal of
Nonlinear Systems and Applications, 111–121, 2011.

36

http://hybridsimulator.wordpress.com
http://control.ee.ethz.ch/~ifaatic/ex/example1.m

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

flows [t]

x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1

1.2

1.4

1.6

1.8

2

jumps [j]

x

(a) Forced jumps logic.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

flows [t]

x

0
0

0.2

0.4

0.6

0.8

1

jumps [j]

x

(b) Forced flows logic.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

flows [t]

x

0 1 2
0

0.5

1

1.5

2

jumps [j]

x

(c) Random logic for flowing/jumping.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

flows [t]

x

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

jumps [j]

x

(d) Random logic for flowing/jumping.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

0

0.2

0.4

0.6

0.8

1

flows [t]

x

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

jumps [j]

x

(e) Random logic for flowing/jumping. Zoomed ver-
sion.

Figure 21: Solution of Example 1.8

37

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

flows [t]

x

0 1
1

1.2

1.4

1.6

1.8

2

jumps [j]

x

(a) Forced jump logic and different D.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.4

0.5

0.6

0.7

0.8

0.9

1

flows [t]

x

0
0.4

0.5

0.6

0.7

0.8

0.9

1

jumps [j]

x

(b) Forced flow logic.

Figure 22: Solution of Example 1.8 with premature stopping.

38

	Introduction
	Installation
	 Lite HyEQ Simulator: A stand-alone MATLAB code for simulation of hybrid systems without inputs
	Solver Function
	Events Detection
	Jump Map

	Software Requirements
	Configuration of Solver
	Initialization
	Postprocessing and Plotting solutions

	HyEQ Simulator: A Simulink implementation for simulation of single and interconnected hybrid systems with or without inputs
	The Integrator System
	CT Dynamics
	Jump Logic
	Update Logic
	Stop Logic

	Software Requirements
	Configuration of HyEQ Simulator with embedded functions for Windows
	Configuration of HyEQ Simulator with embedded functions for Mac/Linux

	Configuration of Integration Scheme
	Initialization
	Postprocessing and Plotting solutions

	Examples
	Further Reading
	Acknowledgments
	References

